COSMIC RAYS ELECTRONIC SPUTTERING YIELD OF INTERSTELLAR H₂O ICE MANTLES

Sputtering in molecular clouds

Gas phase accretion timescale ~10⁹ years / n_H → everything should condense

> Sputtering is one mechanism (re-)injecting species in the gas phase (as well as stochastic heating and secondary photons)

Influence of energetic cosmic rays ?

Measuring the CR sputtering yield with IR

E. Dartois – P2IO – October 2018

GANIL

1.0

Measuring the sputtering with IR

Semi-∞ sputtering yield

Previous measurements

GANIL

H₂O CR sputtering rate

 $\eta^{\infty}_{CR \text{ sputtering}} \approx 8 \text{ H}_2 \text{O/cm}^2/\text{s for } \zeta = 10^{-16} \text{s}^{-1}$

Under implementation in PDR codes

A mechanism to add to VUV photons photodesorption

 $(n_{photodesorption} \approx 10 H_2O/cm^2/s \text{ for } Y \approx 10^{-3})$

Cruz-Diaz+2017

Testing thickness dependence: IGLIAS setup@IRRSUD

QMS versus Infrared

Results and perspective

- SHI in CR, desp. low abundance, have a role to play
- Exp. SHI probe Se dependencies at high Se : better implementation in astrophysical models ice mantles thickness dependence (other ices measured)
- Measured yields : CRs participate to replenishing of dense gas phase, SHI e- sputtering ≥ photons
- Explore the effect on complex organic molecules: build astrophysical model chemistry networks