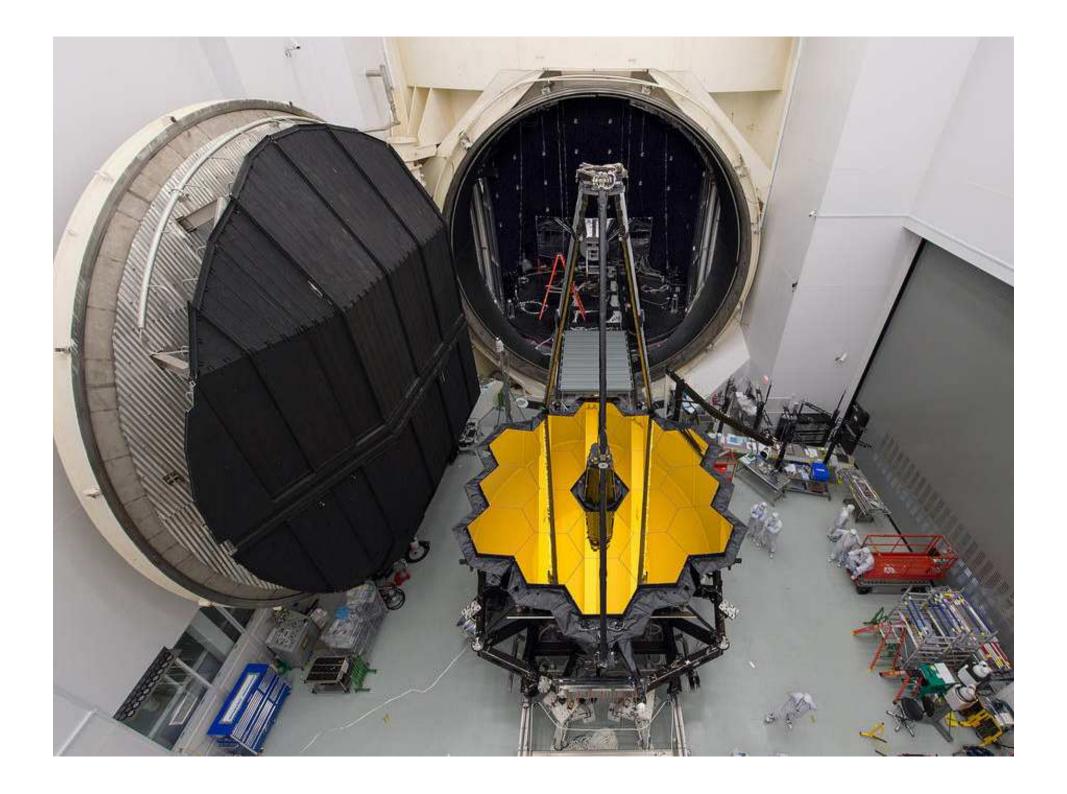
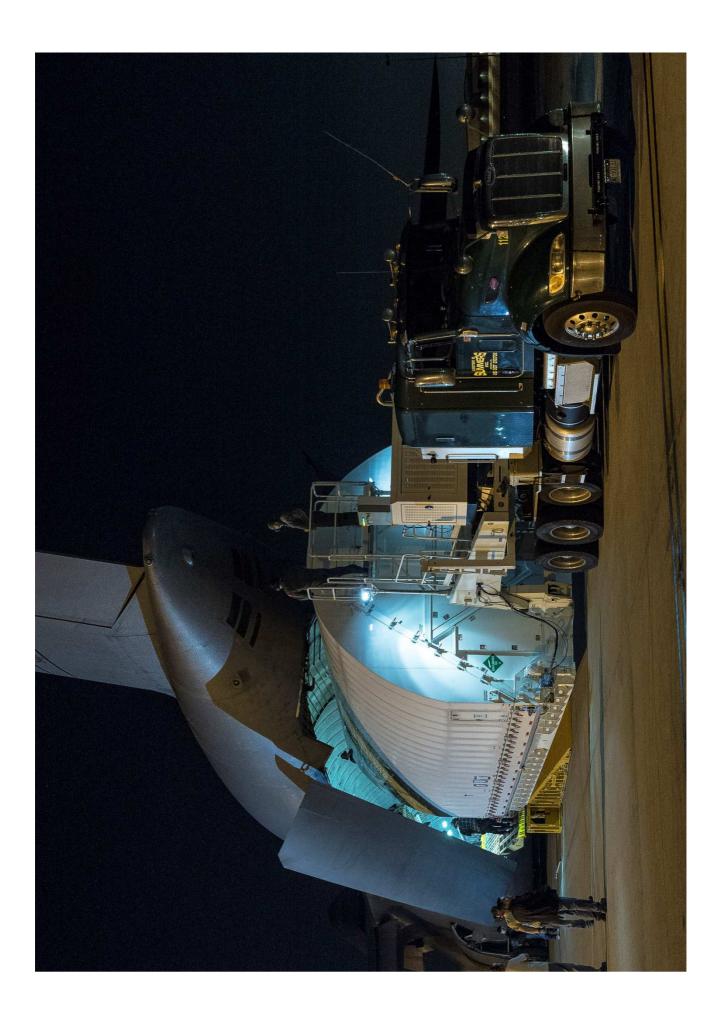


End-to-end cold testing with telescope


at Houston


Cryo Position Metrology

Center of Curvature Optical Assembly

Sept. 15 2017, survived Hurricane Harvey flooding! Telescope now at Northrop Grumman LA

Battery

Spacecraft

Issues on the spacecraft:

- Propulsion transducers damaged and had to be re-welded Thruster valves leaked and had to be repaired

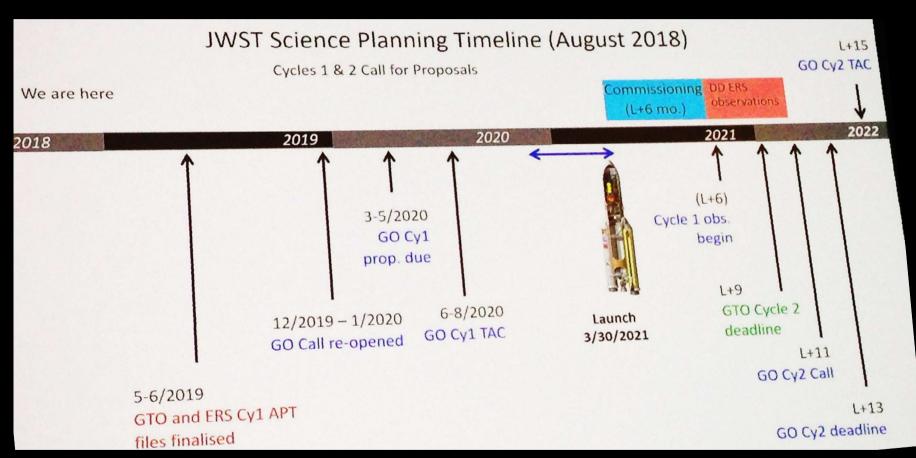
Issues on the sunshield:

- Sunshield deployment cables snagged during test
 Folding the sunshield took longer than expected
 Membrane cover fasteners came loose during acoustic test

The JWST is an observatory

JWST observing programs

- Guest Observer (GO programs)
 - Open access for the community
 - ~80% of time in Cycles 1 through 5
- Guaranteed Time Observer (GTO) programs
 - 4020 hours allocated over first 30 months (i.e. Cycles 1 through 3)
 - NASA policy constraints on time/cycle
- Director's Discretionary Time (DD) programs
 - Up to 10%/cycle i.e. ≤877 hours
 - Rapid response observations & targeted science programs, such as Early Release Science program
 - -- Used during first cycle for Early Release Science (ERS)


What's happened since October 2017?

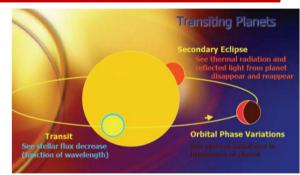
- Early Release Science program selected in early November 2017
 - 106 proposals submitted; 13 selected
 - Further details see https://jwst.stsci.edu/observing-programs/approved-ers-programs
- Cycle 1 General Observer Call for Proposals released November 30 2017
- Cycle 1 Guaranteed Time Observers observing programs (APT files) finalised
- Cycle 1 General Observer was scheduled for April 6 2018 & TAC for 6/2018
 - TAC essentially completely populated
- The process was paused on March 27 2018 when NASA announced a revised schedule
 - Launch date set as May 2020 based on recommendations from Standing Review Board
 - TAC disbanded & community informed
 - Incorporating results from a "lessons learned" review to improve the proposal process
- NASA constituted an Independent Review Board (IRB) to consider all aspects of the projected schedule

Reid IAU Vienna presentation 2018

i _{ID} \$	ERS Program 🗢	PI & Co-Pls ♦	Category \$	Instruments 💠
1288	Radiative Feedback from Massive Stars as Traced by Multiband Imaging and Spectroscopic Mosaics	PI: Olivier Berne (Universite Toulouse) CoPIs: Emilie Habart (Institut d'Astrophysique Spatiale) and Els Peeters (University of Western Ontario)	Stellar Physics	MIRI NIRCam NIRSpec
1309	IceAge: Chemical Evolution of Ices during Star Formation	PI: Melissa McClure (Universiteit van Amsterdam) CoPIs: Adwin Boogert (University of Hawaii) and Harold Linnartz (Universiteit Leiden)	Stellar Physics	MIRI NIRCam NIRSpec
1324	Through the Looking GLASS: A JWST Exploration of Galaxy Formation and Evolution from Cosmic Dawn to Present Day	PI: Tommaso Treu (University of California - Los Angeles)	Galaxies and the IGM	NIRCam NIRISS NIRSpec
1328	A JWST Study of the Starburst- AGN Connection in Merging LIRGs	PI: Lee Armus (California Institute of Technology)	Galaxies and the IGM	MIRI NIRCam NIRSpec
1334	The Resolved Stellar Populations Early Release Science Program	PI: Daniel Weisz (University of California - Berkeley)	Stellar Populations	NIRCam NIRISS
1335	Q-3D: Imaging Spectroscopy of Quasar Hosts with JWST Analyzed with a Powerful New PSF Decomposition and Spectral Analysis Package	PI: Dominika Wylezalek (European Southern Observatory - Germany) CoPIs: Sylvain Veilleux (University of Maryland) and Nadia Zakamska (Johns Hopkins University)	Massive Black Holes and their Galaxies	MIRI NIRSpec
1345	The Cosmic Evolution Early	PI: Steven Finkelstein (University of	Galaxies and	MIRI NIRCam

1345	The Cosmic Evolution Early Release Science (CEERS) Survey	PI: Steven Finkelstein (University of Texas at Austin)	Galaxies and the IGM	MIRI NIRCam NIRSpec
1349	Establishing Extreme Dynamic Range with JWST: Decoding Smoke Signals in the Glare of a Wolf-Rayet Binary	PI: Ryan Lau (California Institute of Technology)	Stellar Physics	MIRI NIRISS
1355	TEMPLATES: Targeting Extremely Magnified Panchromatic Lensed Arcs and Their Extended Star Formation	PI: Jane Rigby (NASA Goddard Space Flight Center) CoPI: Joaquin Vieira (University of Illinois)	Galaxies and the IGM	MIRI NIRCam NIRSpec
1364	Nuclear Dynamics of a Nearby Seyfert with NIRSpec Integral Field Spectroscopy	PI: Misty Bentz (Georgia State University Research Foundation)	Massive Black Holes and their Galaxies	NIRSpec
1366	The Transiting Exoplanet Community Early Release Science Program	PI: Natalie Batalha (NASA Ames Research Center) CoPIs: Jacob Bean (University of Chicago) and Kevin Stevenson (Space Telescope Science Institute)	Planets and Planet Formation	MIRI NIRCam NIRISS NIRSpec
1373	ERS observations of the Jovian System as a Demonstration of JWST's Capabilities for Solar System Science	PI: Imke de Pater (University of California - Berkeley)	Solar System	MIRI NIRCam NIRISS NIRSpec
1386	High Contrast Imaging of Exoplanets and Exoplanetary Systems with JWST	PI: Sasha Hinkley (University of Exeter) Planets and CoPIs: Andrew Skemer (University of California - Santa Cruz) and Beth Biller (University of Edinburgh)		MIRI NIRCam NIRISS NIRSpec

Reid IAU Vienna presentation 2018


	Description	Date	People in charge	Deliveries
1	Benchmarking of atmospheric exoplanet	2016	P. Tremblin . P-O. Lagage +	1 paper (ApJ)
	models		MIRI consortium exoplanet	
			modeling group	
2	Simulate the expected effects of composition	2016-2017	P. Tremblin, PO. Lagage +	At least 2 papers (ApJ or A&A)
	variations (e.g., C/O ratio) for different scenarii		student at UCL	
	of planet formation in disks, for direct imaging			
	and for the exoplanets transiting			
3	Implement of clouds in the ATMO model	2017-2018	P. Tremblin, postdoc	1 paper (ApJ or A&A)
4	Development of 3 D models from the	2016-2018		1 paper (ApJ or A&A)
	dynamico code: Post-processing of 3D models		P. Tremblin + postdoc	
	with ATMO to produce 2D maps of the			
	atmosphere transmission spectra, study of			
	simple clouds prescriptions.			
5	Analysis of the first JWST exoplanet	2019	P.O. Lagage, PhD (of WP2),	At least 1 paper (Nature or Science)
	observations in ERS and in GTO		S. Fromang, M. Ollivier,	
			P. Tremblin and international	
			collaborators	

Item 5 Replaced by more simulations

Thesis of Marine Martin Lagarde transit generator

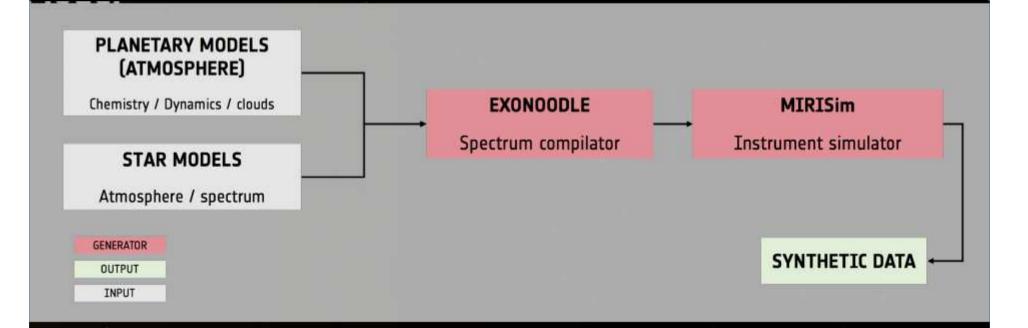
Coupled to the MIRI simulatorgénérateur

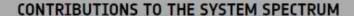
(poster presented at EPSC)

Camilla Danielski : directly imaged exoplanets (to appear in ApJ)

And analysis of available especially WASP43 b (ERS transiting exoplanet: WASP 43 b) Giuseppe Morello presentation

GENERATING JWST TRANSITING EXOPLANETS TIME-SERIES DATA SETS





Marine Martin-Lagarde¹, Pierre-Olivier Lagage¹, René Gastaud¹, Alain Coulais^{1,2}, Christophe Cossou³ and Giuseppe Morello¹

Abstract

To prepare JWST observations of transiting exoplanets, we have developed a time series spectra generator for exoplanet(s)—star systems where the planet orbits its host star. When coupled with a telescope-instrument simulator, it generates representative sets of data. They will be used to optimize data reduction methods, retrieval methods and to identify the impact of various effects (limb darkening, 3D versus 1D exoplanet models). One of the first applications is the simulation of JWST observations of the exoplanet WASP-43b with the MIRI instrument in slitless low-resolution mode.

· Default: Blackbody with temperature

· File: Modelled spectrum

Star limb-darkening

· Default: None (homogeneous star)

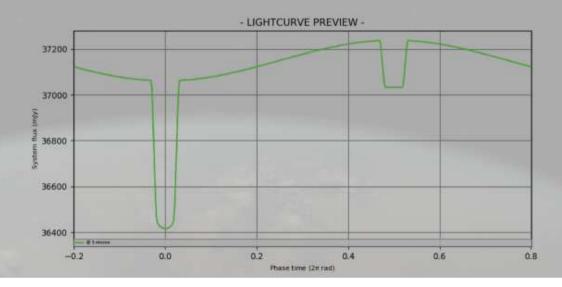
· File: Values for various forms of limb darkening coefficients

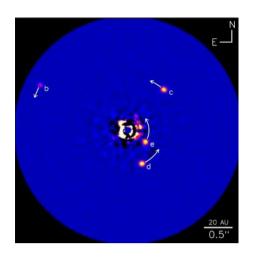
Planet emission spectrum

· Default: Blackbody with day and night temperatures

· File: Modelled spectrum (day and night)

Planet reflection spectrum


· Default: Jupiter geometric albedo


· File: Albedo integrated on the surface, wavelength-dependent

Planet transmission spectrum

· Default: None (no atmosphere)

File: Modelled as a variable R_p(λ)

ATMOSPHERIC CHARACTERIZATION OF DIRECTLY IMAGED EXOPLANETS WITH JWST/MIRI.

C. Danielski, 1, 2, 3, 4 Jean-Loup Baudino, 5 Pierre-Olivier Lagage, 1, 2 Anthony Boccaletti, 6 René Gastaud, 1, 2 Alain Coulais, 7, 1, 2 and Bruno Bézard 8

To appear in ApJ

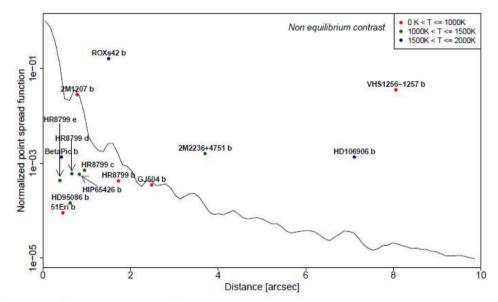
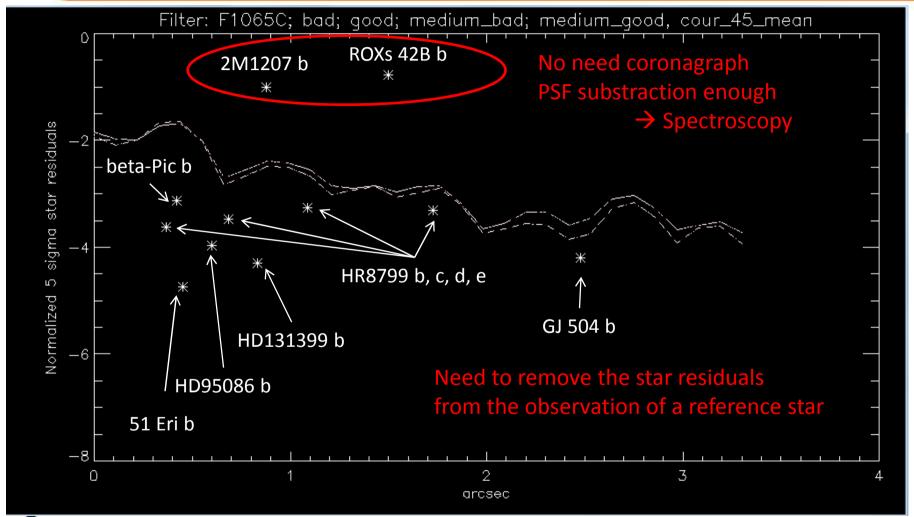
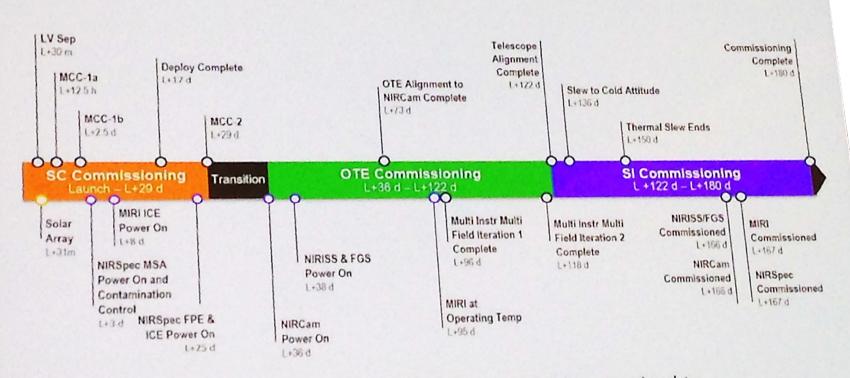
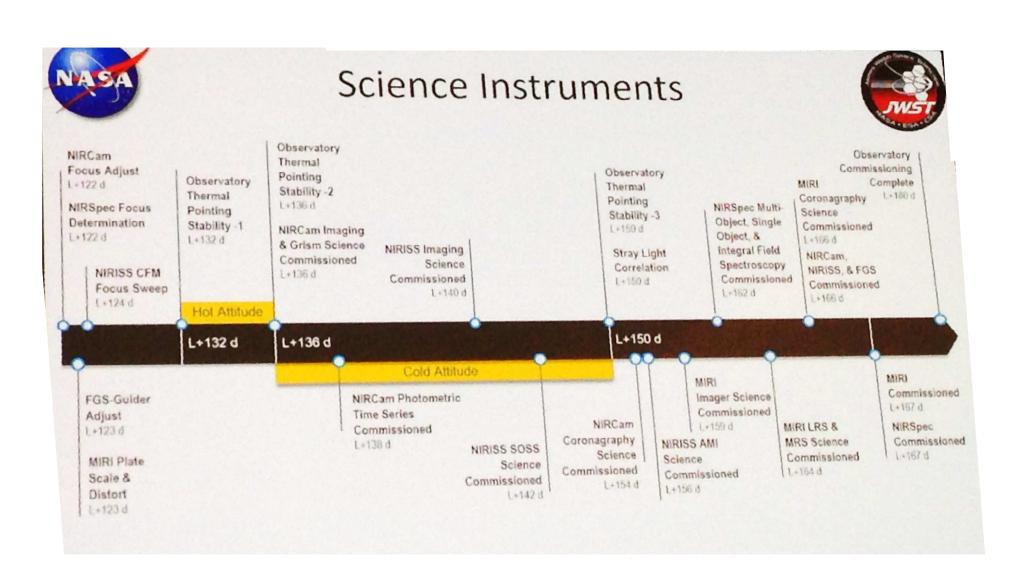



Figure 1. Non coronagraphic point spread function versus the distance to the peak signal, normalized to 1. The 1D curve has been measured from a simulated image of a MIRI observation with a filter at $11.3\mu\mathrm{m}$ (using the WebbPSF software). The signal has been averaged over an annulus of 1 pixel width (i.e. 0.11''). Dots indicate the planet-to-star contrast of the targets under consideration. Colors correspond to the temperature of the target as indicated in the top legend. Those planetary systems whose planet-to-star contrast lies above the curve will be observed with the spectroscopic mode. Note that 2M1207 b contrast takes into account the host star and disk flux.

MIRI European Consortium


C. Danielski et al.

Commissioning Timeline



- JWST commissioning is the collection of flight activities required to activate, checkout, and calibrate the Observatory subsystems, including the science instruments to perform Cycle 1 science.
- Majority of commissioning will be carried out at the Mission Operations Center, located at STScI, by NASA, ESA, CSA, aerospace industry partners, SI teams, and STScI staff.

O Milestone
O Deployment
O SUOTE Activity

2

