

WP4- Gaz Phase

Octobre 2018 M.Chabot pour AGAT

Motivation

Fournir à la communauté (KIDA) des RB semi empiriques pour la chimie en phase gazeuse des espèces carbonées.

Reporting JWST – WP4 –octobre 2017 - C_nN-

Excitation and fragmentation of $C_n N^+$ (n=1-3) molecules in collisions with He atoms at intermediate velocity; fundamental aspects and application to astrochemistry.

Thèse Paris Sud, T. Mahajan (28/9/18) sous la direction de K. Béroff

Semiempirical breakdown curves of C2N(+) and C3N(+) molecules application to products branching ratios predictions of physical and chemical processes involving these adducts

IdBarkach, T., Mahajan,	T., Chabot, M.,	et al. Molecular	r Astrophysics, 12	', 25 (2018)
-------------------------	-----------------	------------------	--------------------	--------------

Reactants	Products	Model BR (abs.err)	KIDA BR	E _a (eV)	ΔE (eV)
$C_2^+ + N$	$C^+ + CN$	1	1	8.24	1.85
$CN^+ + C$	$C^+ + CN^*$	0.72(+0.07/-0.05)	1	8.86	2.47
	$C_2^+ + N^*$	0.28(+0.05/-0.07)			0.62
$N^+ + C_2$	$CN^+ + C^*$	0.40(0.05)		11.02	2.16
	$C^+ + CN^*$	0.39(0.05)			4.63
	$C_2^+ + N^*$	0.21(0.04)	1		2.78
$C_3^+ + N$	$[C_2N^+] + C$	1		5.45	0.93
$C_2^+ + CN$	$[C_2N^+] + C$	1		5.43	0.91
$C^+ + CNC$	$[C_2N^+] + C$	0.58(0.06)		6.02	1.5
	$C_2^+ + CN$	0.30(0.06)			0.59
	$C_{3}^{+} + N$	0.12(0.04)			0.57
$C^+ + CCN$	$[C_2N^+] + C$	0.58(0.06)	0.7 [¤]	6.1	1.58
	$C_2^+ + CN$	0.30(0.06)	0.3		0.67
	$C_3^+ + N$	0.12(0.04)			0.65
$CN^+ + C_2$	$[C_2N^+] + C^{\P}$	0.35(+0.03/-0.35)		7.4	2.88
	$C_2^+ + CN^{\P}$	0.28(+0.03/-0.28)	1		1.97
	$C^{+} + [C_2N]^*$	0.23(+0.77/-0.03)			1.38
	$C_3^+ + N^{\P}$	0.12(+0.02/-0.12)			1.95
$N^+ + C_3$	$[C_2N^+] + C$	0.33(+0.15/-0.04)		8.28	3.76
	$C_2^+ + CN$	0.25[+0.15/-0.03)			2.85
	$C^{+} + [C_2N]$	0.22(+0.14/-0.03)			2.26
	$C_{3}^{+} + N$	0.11(+0.13/-0.02)			2.83
	$CN^+ + C_2^{\P}$	0.09(+0.02/-0.09)			0.88
	-				

-> ~ 50 rapports de branchement dans KIDA

Pas d'effet sur la chimie TMC1 - les CnN sont le reflet des Cn ; mais, C2N est prédit fort (comme CN et C3N) alors qu' il n'y a pas de rapport d'observations, dans les nuages denses, pour C2N a contrario des CN et C3N.

Motivation :

La chimie bottom-up implique toujours les CHy dans le MIS.

Dans le diffus : $C^+ + H_2$ puis ...

Dans les « nuages denses » : $C^+ + H_2$ (et on coupe la lumière) (chimie dépendante du temps)

Dans les PDR : photo érosion de la matière carbonée = injection en continu d'un flux de CH4 dans le réseau chimique (e.g Alata 2015, Dartois 2017).

Nb: ceci est du spoil de la thèse de Tijani (soutenance programmée été 2019). On est à l'arrache à cause du problème de mise en place des crédits en début de programme (6 mois), vive l'administration ...

CHy On en est ou ? :

Les données sont réduites.

Espèces	Nb de RB	Espèces	Nb de RB	Espèces	Nb de RB
CH ₂	4	CH3	6	CH4	9
CH ₂ +	6	CH ₃ +	10	CH ₄ +	14
CH ₂ ++	7	CH ₃ ++	11	CH ₄ ++	17
CH ₂ +++	6	CH ₃ +++	11	CH ₄ +++	16
CH ₂ ++++	5	CH3++++	8	CH ₄ ++++	14

Les calculs de structure nécessaire pour construire les BDC sont presque fini (col Tijani et Univ Autonome Madrid). Il manque quelques barrières pour les chargés.

BDC du CH₄

Le CH4 est particulier en ce que la voie CH3/H est peuplée même pour des énergies auxquelles les autre molécules carbonées produisent des voies à trois fragments.

0

0

100 200 300 400 500

Pixel

Π

0 100 200 300 400 500

pixel

Ca marche bien avec les photons et la DR

Sonde	γ ^a (10.2eV)	Model	γ ^a (10.5eV)	Model	DR ^b (12.8ev)	Model	HVC	Model	
CH4	0	0	0	0	0	0	13 ± 2	13	b: Th
СН3/Н	42 ± 5	40	26 ± 4	34	18 ± 3	22	33 ± 5	22	omas
СН2/Н2	48 ± 5	32	17 ± 5	17	6 ± 1	4	7 ± 1	11	, De
СН2/Н/Н	3 ± 8	20	48 ± 3	35	51 ± 3	51	24 ± 4	31	tal J
C/H2/H2	0	5	0	8	2 ± 1	4	2 ± 1	4	. Phy
СН/Н2/Н	7	4	9	5	23 ± 1	17	8 ± 1	9	s Che
сн/н/н/н	0	0	0	0	0	0	6 ± 2	5	:m 20
С/Н2/Н/Н	0	0	0	0	0	2	4 ± 3	4)13
с/н/н/н/н	0	0	0	0	0	0	4 ± 4	2	

Futur...

Andromède ne peut pas produire des molécules à une énergie suffisante au-delà des CHy mais le Tandem si !

Projet SIMATT (Source d'Ion Moléculaire au Terminal d'un Tandem)

2018/2019 études 2019/2020 construction 2020/2021 expériences (C₂Hy ?) 2020/2022 réduction

RB photodissociation **MIS**

Produit densité spectrale -section efficace Leiden

