Circumstellar disk modeling with POLARIS

R. Brauer, E. Pantin, E. Habart October 19, 2018

Projet P2IO JWST

Provide predictions for observations

- Provide predictions for observations
- · Derive constraints from existing observations

- Provide predictions for observations
- · Derive constraints from existing observations

- Provide predictions for observations
- · Derive constraints from existing observations

Radiative transfer code

• Versatile 3D approximation of the disk

- Provide predictions for observations
- · Derive constraints from existing observations

- Versatile 3D approximation of the disk
- Dust grain heating (equilibrium + stochastic)

- Provide predictions for observations
- · Derive constraints from existing observations

- Versatile 3D approximation of the disk
- Dust grain heating (equilibrium + stochastic)
- Full wavelength coverage (scattering + thermal)

- Provide predictions for observations
- · Derive constraints from existing observations

- Versatile 3D approximation of the disk
- Dust grain heating (equilibrium + stochastic)
- Full wavelength coverage (scattering + thermal)
- Optical properties of various dust compositions

• MCFOST (Pinte et al. 2006)

- MCFOST (Pinte et al. 2006)
 - Well-advanced

- MCFOST (Pinte et al. 2006)
 - Well-advanced
 - Closed source

- MCFOST (Pinte et al. 2006)
 - Well-advanced
 - Closed source
- POLARIS (Reissl et al. 2016; Brauer et al. 2017)

- MCFOST (Pinte et al. 2006)
 - Well-advanced
 - Closed source
- POLARIS (Reissl et al. 2016; Brauer et al. 2017)
 - Open source, own development

- MCFOST (Pinte et al. 2006)
 - Well-advanced
 - Closed source
- POLARIS (Reissl et al. 2016; Brauer et al. 2017)
 - Open source, own development
 - Missing some key features

- MCFOST (Pinte et al. 2006)
 - Well-advanced
 - Closed source
- POLARIS (Reissl et al. 2016; Brauer et al. 2017)
 - Open source, own development
 - Missing some key features
- \Rightarrow Use POLARIS and include missing features

- Cartesian (OcTree)
- Spherical
- Cylindrical
- Voronoi

Grid quantities

- Hydrogen density
- Dust density
- Gas temperature
- Dust temperature
- Velocity field
- Magnetic field strength

- Cartesian (OcTree)
- Spherical
- Cylindrical
- Voronoi

Grid quantities

- Hydrogen density
- Dust density
- Gas temperature
- Dust temperature
- Velocity field
- Magnetic field strength

Additional data

- Emission sources (stars, ISRF, ...)
- Detector parameter (direction, λ , ...)
- Dust properties (silicate, carbon)
- Gas properties (LAMBDA, JPL, CDMS)
- Zeeman properties

- Cartesian (OcTree)
- Spherical
- Cylindrical
- Voronoi

Grid quantities

- Hydrogen density
- Dust density
- Gas temperature
- Dust temperature
- Velocity field
- Magnetic field strength

Additional data

- Emission sources (stars, ISRF, ...)
- Detector parameter (direction, λ , ...)
- Dust properties (silicate, carbon)
- Gas properties (LAMBDA, JPL, CDMS)
- Zeeman properties

Calculation modes

- Dust temperature distribution
- Stellar or dust emission scattered at spherical dust grains
- Thermal emission of dust grains (including dust grain alignment)
- Spectral line emission (including Zeeman splitting and N-LTE level populations)

- Cartesian (OcTree)
- Spherical
- Cylindrical
- Voronoi

Grid quantities

- Hydrogen density
- Dust density
- Gas temperature
- Dust temperature
- Velocity field
- Magnetic field strength

Additional data

- Emission sources (stars, ISRF, ...)
- Detector parameter (direction, λ , ...)
- Dust properties (silicate, carbon)
- Gas properties (LAMBDA, JPL, CDMS)

POLARIS

- Zeeman properties

- Emission maps (full Stokes)
- Line profiles (full Stokes)
- Optical depth and column density maps
- 2D cuts through the grid

Calculation modes

- Dust temperature distribution
- Stellar or dust emission scattered at spherical dust grains
- Thermal emission of dust grains (including dust grain alignment)
- Spectral line emission (including Zeeman splitting and N-LTE level populations)

- Cartesian (OcTree)
- Spherical
- Cylindrical
- Voronoi

Grid quantities

- Hydrogen densities
- Dust densities
- Gas temperatures
- Dust temperature
- Velocity field
- Magnetic field strength
- Dust composition
- Dust size limits

Additional data

- Emission sources (stars, ISRF, ...)
- Detector parameter (direction, λ , ...)
- Dust properties (silicate, carbon, Them
- Gas properties (LAMBDA, JPL, CDMS)
- Zeeman properties

- Emission maps (full Stokes)
- Line profiles, SEDs (full Stokes)
- Optical depth and column density maps
- 2D cuts through the grid

Calculation modes

- Dust temperature distribution (including stochastic heating)
- Stellar or dust emission scattered at spherical dust grains (including ray-tracing approach

POLARIS

- Thermal emission of dust grains (including dust grain alignment, ray-tracing customization
- Spectral line emission (including Zeeman splitting and N-LTE level populations)

Dust grain options

Dust grain options

• Single composition and size distribution

Dust grain options

- Single composition and size distribution
- Mixture of several dust compositions

Variation of dust properties

Dust grain options

- Single composition and size distribution
- · Mixture of several dust compositions

Use different dust per cell

Variation of dust properties

Dust grain options

- Single composition and size distribution
- Mixture of several dust compositions

Use multiple density distributions

Variation of dust properties

Dust grain options

- Single composition and size distribution
- · Mixture of several dust compositions

Use different size limits per cell

 $a \leq 10$ nm, low C(T)

 $a \leq 10$ nm, low C(T)

 $a \gtrsim 10$ nm, high C(T)photon T_1

 $a \leq 10$ nm, low C(T)

 $a \leq 10$ nm, low C(T)

 $a \leq 10$ nm, low C(T)

 $a \leq 10$ nm, low C(T)

 $a \leq 10$ nm, low C(T)

 $a \leq 10$ nm, low C(T)

 $a \leq 10$ nm, low C(T)

 $a \leq 10$ nm, low C(T)

 $a \gtrsim 10$ nm, high C(T)

 \Rightarrow Probability distribution of temperatures instead of T_{equ}

Stochatically heated grains benchmark (CAMPS et al. 2015)

THEMIS

The Heterogeneous dust Evolution Model for Interstellar Solids

THEMIS

The Heterogeneous dust Evolution Model for Interstellar Solids

Overview of the Themis model (JONES et al. 2017)

THEMIS

The Heterogeneous dust Evolution Model for Interstellar Solids

Size distribution (JONES et al. 2013)

• Constrain disk parameter and predict observations

Modeling GG Tau A

· Constrain disk parameter and predict observations

Modeling GG Tau A

· Constrain disk parameter and predict observations

Dust density as a midplane cut

Modeling GG Tau A

· Constrain disk parameter and predict observations

Simulated intensity (H-Band)

Modeling GG Tau A

· Constrain disk parameter and predict observations

Polarized intensity (Subaru/HiCIAO, Yang et al. 2017)

Simulated intensity (H-Band)

Modeling GG Tau A

· Constrain disk parameter and predict observations

Simulated polarized intensity (H-Band)

• Constrain disk parameter and predict observations

Modeling circumstellar disks (with Thomas)

• Constrain disk parameter and predict observations

Modeling circumstellar disks (with Thomas)

• Aromatic and aliphatic infrared band emission

• Constrain disk parameter and predict observations

Modeling circumstellar disks (with Thomas)

- Aromatic and aliphatic infrared band emission
- Spatial variations (including gaps and cavities)

Circumstellar disk modeling with POLARIS

Implementation of required features

- Implementation of required features
 - Spatial variation of grain properties

- Implementation of required features
 - Spatial variation of grain properties
 - Stochastic heating

- Implementation of required features
 - Spatial variation of grain properties
 - Stochastic heating
 - THEMIS dust model

- Implementation of required features
 - Spatial variation of grain properties
 - Stochastic heating
 - THEMIS dust model
- Research projects

- Implementation of required features
 - Spatial variation of grain properties
 - Stochastic heating
 - THEMIS dust model
- Research projects
 - Modeling the disk around GG Tau A

- Implementation of required features
 - Spatial variation of grain properties
 - Stochastic heating
 - THEMIS dust model
- Research projects
 - Modeling the disk around GG Tau A
 - Band emission in disks (with Thomas)

- Implementation of required features
 - Spatial variation of grain properties
 - Stochastic heating
 - THEMIS dust model
- Research projects
 - Modeling the disk around GG Tau A
 - Band emission in disks (with Thomas)
 - \Rightarrow Numerous options for future projects

Circumstellar disk modeling with POLARIS

- Implementation of required features
 - Spatial variation of grain properties
 - Stochastic heating
 - THEMIS dust model
- Research projects
 - Modeling the disk around GG Tau A
 - Band emission in disks (with Thomas)
 - \Rightarrow Numerous options for future projects

Thank you for your attention