Projet P2IO JWST Friday, October 19th 2018

Nano carbon dust emission in proto-planetary disks: the aliphatic-aromatic components

Thomas Boutéraon, Emilie Habart, Nathalie Ysard & Anthony Jones, Emmanuel Dartois, Thomas Pino

Nano carbon dust emission in proto-planetary disks: the aliphatic-aromatic components

Dust plays a role in:

- The formation of molecules
- The thermal balance: gas heating / cooling
- Disk dynamics: structure and formation of planets

These roles depend on its properties and therefore on its composition.

Outline

- Dust in interstellar and circumstellar media
- Its composition and signatures
- Proto-planetary disk and how to probe it
- Observation and decomposition
- Results : dust properties at the disk surface
- Comparison with the THEMIS model
- Summary
- Outlook

Gas and Dust - The Dust cycle in the Galaxy

What is interstellar dust made of?

« refractory » solids

« volatile » solids

What is carbonaceous dust made of?

Aromatics Aliphatics Olefinics

Dust signatures in the 3-4 µm-range

Proto-planetary disk and how to probe it

a

d 🔶 C

- Made of gas and dust (90/10)
- Orbiting the central star
- More or less flared

2

- Hot surface VS cold interior
- Small grains of dust coupled to gas and present at the surface
- Large grains settle in the median plane

Observations

	HD 100546	HD 100453	HD 169142	HD 179218
Temp. [K]	10500	7600	8250	9640
Lum. [L⊙]	32	10	8.55	182
Mass [M⊙]	2.4	1.8	1.7	3.7
Age [Myr]	> 10	15	6	1
Distance [pc]	103	114	145	254
G₀ at 50 au	4.2x10 ⁶	2.4x10⁵	3.4x10⁵	1.6x10 ⁷

Observations

Disk observations - Spatial mean of spectra

Identification of signatures and decomposition

Results - Signature correlation

Boutéraon et al, submitted

Results - Band ratios according to the distance

Good correlation of signatures > unique kind of carriers > similar composition according to the distance

Boutéraon et al, submitted

Results - Band ratios according to G0 / nH

THEMIS: The Heterogeneous dust Evolution Model for Interstellar Solids

SED with THEMIS : from aromatics to aliphatics

- Signatures vary a lot with the composition (i.e. the band gap)
- For aromatics, the band to continuum ratio decreases with the size

 > Spectrum gives both indications on the grain composition and the upper limit of smallest grain size

Results - Comparison with THEMIS

Application of the same decomposition method to spectra simulated by THEMIS.

> Values of the intensity ratios are well reproduced

> Highly aromatic grains with an aliphatic component

> The smallest grains around 0.5 nm

Boutéraon et al, submitted

Summary

- This work shows the presence of features related to aromatic and aliphatic materials in disks around Herbig stars
- These features are observed in a wide spatial range of the disks (from about \sim 10 to 100 au), even if the most inner parts of these disks remain inaccessible to our observations.
- Correlation between aliphatic/aromatic features in various conditions signs for carriers of same nature stochastically heated nano-grains of mixed aromatic and aliphatic composition.
- Our analysis provides evidence for their presence at the disk surface and in the inner cavity.
- No strong variations in band ratios according to the distance to the star are observed. This suggests that it could have a continuous replenishment at the disk surface which are PDR-like
- The THEMIS model, a valuable and pertinent approach to understand the dust evolution in disks

Outlook

Modelling the disk with Polaris/THEMIS > work with R. Brauer

- > physical conditions in the disk
- > constrained by previous results
- > JWST,VLT/MATISSE

- Grain processing time
- > grain composition
- > optical properties
- > constraints on disk physical conditions
- > evolution of the grain size distribution