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The ecological impact of high-performance 
computing in astrophysics
Computer use in astronomy continues to increase, and so also its impact on the environment. To minimize the 
effects, astronomers should avoid interpreted scripting languages such as Python, and favour the optimal use of 
energy-efficient workstations.

Simon Portegies Zwart

The third pillar of science, simulation 
and modelling, already had a 
solid foothold in fourth-century 

astronomy1, but this discipline flourished 
with the introduction of digital computers. 
One of its challenges is the carbon emission 
resulting from this increased popularity. 
Generally unrecognized, the magnitude 
of the carbon footprint of computing in 
astrophysics should be emphasized. One 
purpose of this Comment is to raise this 
awareness, and present best practices 
for (super)computer usage and choice of 
programming language.

Carbon footprint of computing
In Fig. 1, we compare the average human 
production of CO2 (red lines) with 
astronomical activities, such as telescope 
operation, the emission of an average 
astronomer2 and finishing a (four year) 
PhD3 (green points). While large observing 
facilities are cutting down on carbon 
footprint by offering remote operation, the 
increased speed of computing resources can 
hardly be compensated by their increased 
efficiency. This also is demonstrated in  
Fig. 1, where we compare measurements 
for several popular astronomical computing 
activities (turquoise points). These 
measurements are generated using the 
Astrophysical Multipurpose Software 
Environment4, in which most of the work is 
done in optimized and compiled code. We 
include simulations of the Sun’s evolution 
from birth to the asymptotic giant branch 
using a Henyey solver5 and parametrized 
population synthesis6.

We also present in Fig. 1 timings for 
simulating the evolution of a self-gravitating 
system of a million equal-mass 
point-particles in a virialized Plummer 
sphere for 10 dynamical timescales (labelled 
‘N-body’). These calculations are performed 
by direct integration (with the fourth-order 
Hermite algorithm) and using a hierarchical 
tree-code (with leapfrog algorithm). Both 
calculations are performed on a CPU as well 

as with a graphics processing unit (GPU). 
Not surprisingly, the tree-code running a 
single GPU (second turquoise point from 

the left) is about a million times faster than 
the direct-force calculations on a CPU 
(right-most turquoise point); one factor 
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Fig. 1 | Carbon production of a number of common activities among astronomers. CO2 production 
as a function of the time to solution for a variety of popular computational techniques employed in 
astrophysics (turquoise data points), and other activities common among astronomers2,3 (green data 
points). The solid red curve gives the individual world-average production in 2017, whereas the dotted 
red curve give the maximum per-capita country average. The Laser Interferometer Gravitational-Wave 
Observatory (LIGO) carbon production is taken over its first 106-day run (using ~180 kW)17, and for the 
Atacama Large Millimeter/submillimeter Array (ALMA) a 1-year average18. A Falcon 9 launch lasts about 
32 minutes during which ~110,000 litres of highly refined kerosene is burned. The tree-code running on 
a GPU was performed using N = 220 particles. The direct N-body code on a CPU (right-most turquoise 
data point) was run with N = 213 particles15, and the other codes with N = 216 particles. All performance 
results were scaled to N = 220 particles. The calculations were performed for 10 N-body time units19. The 
energy consumption was computed using the scaling relations of ref. 20 and converted from KWh to CO2 
using 0.283 kWh kg–1. The turquoise dotted curve shows the estimated carbon emission when these 
calculations would have been implemented in Python running on a single core. The burgundy curve 
shows how the performance and carbon production changes while increasing the number of compute 
cores from 1 to 106 (out of a total of 7,299,072 of the world’s fastest computer, left-most point) using the 
performance model of ref. 21. Figure created with Matplotlib22.
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of 1,000 originates from the many cores of 
the GPU7, and the other from the favourite 
scaling of the tree algorithm8. The trend in 
carbon production is also not surprising: 
a shorter runtime leads to less carbon. 
The emission of carbon while running a 
powerful workstation is comparable to the 
world’s per-capita average.

Now consider the single-core versus 
multi-core performance of the direct 
N-body code in Fig. 1 (burgundy line).  
The turquoise data point to the right gives 
the single-core workstation performance, 
but the burgundy data point below it shows 
the single-core performance on today’s 
largest supercomputer. The curve gives the 
multi-core scaling up to 106 cores (left-most 
data point). The relation between the 
computing time (time to solution) and the 
carbon footprint of the calculations is not 
linear. When running a single core, the 
supercomputer produces less carbon than a 
workstation (we assumed the supercomputer 
to be used to capacity by other users). 
Adopting more cores results in better 
performance, at the cost of producing more 
carbon. Similar performance to a single 
GPU is reached when running 1,000 cores, 
but when the number of cores is further 
increased, the performance continues 
to grow at an enormous cost in carbon 
production. When running a million  
cores, the emission of running a 
supercomputer by far exceeds air travel 
and approaches the carbon footprint of 
launching a rocket into space.

Concurrency for lower emission
When parallelism is optimally utilized, 
the highest performance is reached for 
the maximum core count, but the optimal 
combination of performance and carbon 
emission is reached for ~1,000 cores, after 
which the supercomputer starts to produce 
more carbon than a workstation. The 
improved energy characteristics for parallel 
operation and its eventual decline is further 
illustrated in the Z-plot presented in  
Fig. 2, showing energy consumption as a 
function of the performance of a 96-core 
(192 hyperthreaded) workstation.

Running single core on a workstation is 
inefficiently slow and produces more carbon 
than running multi-core. Performance 
continues to increase with core count until 
optimal energy consumption is reached 
when all physical cores are occupied (in 
Fig. 2 this happens around 96 physical 
cores, indicated by the green star). Runtime 
continues to drop when also using virtual 
cores, but at the cost of higher emission. 
Note that the carbon emission of the parallel 
calculation (burgundy curve in Fig. 1) 
does not drop with increased core count, 

because we assumed that the supercomputer 
is shared, whereas we assumed that the 
workstation used in Fig. 2 was private.

Scaling our measurements of the 
compute performance and energy 
consumption with the clock frequency  
of the processor (blue and red points for 
each core count) reduces wall-clock time, 
but costs considerably more energy (see also  
ref. 9). Although not shown here, reducing 
the clock speed slows down the computer 
while increasing the energy requirement.

If the climate is a concern, we should 
prevent loading a supercomputer to capacity. 
The wish for more environmentally friendly 
supercomputers triggered the contest to 
find the greenest supercomputers10. Since 
the inauguration of the so-called Green500 
ranking, the performance per watt has 
increased from 0.23 TFLOP kW–1 by a Blue 
Gene/L in 2007 (ref. 10) to more than 20 
TFLOP kW–1 by the MN-3 core server today 
(https://www.top500.org/lists/green500/). 
This enormous increase in efficiency is 
mediated by the further development of 
low-power many-core architectures, such 

as the GPU. The efficiency of modern 
workstations, however, has been lagging. 
A single core of the Intel Xeon E7-8890, 
for example, runs at ~4 TFLOP kW–1, and 
the popular Intel core-i7 920 tops only 0.43 
TFLOP kW–1. Workstation processors have 
hardly kept up with the improved carbon 
characteristics of GPUs and supercomputers.

For optimal operation, run a few 
(~1,000) cores on a supercomputer or a 
GPU-equipped workstation. When running 
a workstation, use as many physical cores as 
possible, but leave the virtual cores alone. 
Over-clocking reduces wall-clock time but at 
a greater environmental impact.

the role of language on the ecology
So far, we assumed that astrophysicists 
invest in full code optimization that uses 
the hardware optimally. However, in 
practice, most effort is generally invested 
in developing the research question, after 
which designing, writing and running the 
code is not the primary concern. This holds 
as long as the code writing and execution 
are sufficiently fast. As a consequence, 
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Fig. 2 | energy to solution as a function of code performance. The Z-plot shows the number of 
processors (and processor frequencies) and the energy consumed as a function of performance20.  
The runs (green dots) were performed using a quad CPU 24-core (48 hyperthreaded) Intel Xeon  
e7-8890 v4 at 2.20 GHz calculated with 1, 2, 4, ..., 192 cores. Curves of constant core-count are indicated 
for 1, 4, 64 and 192 cores (black curves). The other coloured points (blue and red) give the relation for 
overclocking the processor to 3 GHz and 4 GHz, scaled from the measured points using overclocking 
emission relations from ref. 23. Dotted curves give constant energy-requirement-to-solution (horizontal) 
and sustained processor performance (vertical). The star at the crossing of these two curves was 
measured using 96 physical cores. The calculations were performed using a bulirsch–Stoer algorithm 
with a Leapfrog integration24 at a tolerance in the energy E of dE/E = 10–8 using a word length of 64 bits.
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interpreted scripting languages, such as 
Python11, rapidly grow in popularity.

According to the Astronomical Source 
Code Library (ASCL, https://ascl.net/), 
about half of the deposited code is written 
in Python, Java, IDL or Mathematica. Only 
18%, 17% and 16% of codes are written 
in Fortran, C and C++, respectively. 
Python is popular because it is interactive, 
strongly and dynamicaly typed, modular, 
object-oriented and portable. But most of 
all, Python is easy to learn and it gets the job 
done without much effort, whereas writing 
in C++ or Fortran can be rather elaborate.

One major disadvantage of Python, 
however, is its relatively slow speed 
compared with compiled languages. In  
Fig. 3, we present an estimate of the amount 
of CO2 produced when performing a direct 
N-body calculation of 214 equal-mass 
particles in a virialized Plummer sphere. 
Each calculation was performed for the 
same amount of time and scaled to 1 day for 
the implementation in C++.

Python (and to a lesser extent Java) takes 
considerably more time to run and produces 
more CO2 than C++ or Fortran. Python and 
Java are also less efficient in terms of energy 

per operation than compiled languages12, 
which explains the offset away from the 
dotted curve (Fig. 3).

The popularity of Python is disquieting. 
Among 27 tested languages, only Perl and 
Lua are slower12. The runtime performance 
of Python can be improved in a myriad 
of ways. Most popular are the Numba13 or 
NumPy14 libraries, which offer pre-compiled 
code for common operations. In principle, 
Numba and NumPy can lead to an 
enormous increase in speed and reduced 
carbon emission. However, these libraries 
are rarely adopted for reducing runtime 
by more than an order of magnitude 
(according to the ASCL). NumPy, for 
example, is mostly used for its advanced 
array handling and support functions. Using 
these will reduce runtime and, therefore, 
also carbon emission, but optimization is 
generally stopped as soon as the calculation 
runs within an unconsciously determined 
reasonable amount of time, such as the 
coffee-refill timescale or a holiday weekend.

In Fig. 1 we presented an estimate  
of the carbon emission as a function of 
runtime for Python implementations 
(see turquoise dotted curve) of popular 

applications. The continuing popularity 
of Python should be juxtaposed with the 
ecological consequences. We teach Python 
to students, and researchers accept the 
performance punch without realizing the 
ecological impact. Using C++ and Fortran 
instead of Python would save enormously 
in terms of runtime and CO2 production. 
Another reason why students should not 
learn to program using an inefficient 
language running on slow hardware but 
start with the fastest language on the biggest 
computers is provided by Jevons paradox. 
This paradox implies that a gradual increase 
in efficiency or capacity leads to a resource’s 
oversubscription without added benefit: 
a gradual increase in computer speed and 
language efficiency lead to sub-optimal code.

Conclusions
The popularity of computing in research is 
proliferating. This impacts the environment 
by increased carbon emission. Running 
scripts on a single core of a powerful 
workstation is not environmentally friendly. 
Still, this mode of operation seems to be 
most popular among astronomers, as it 
is stimulated by the educational system 
and mediated by the ease of use and the 
availability of the hardware. This trend 
leads to an unnecessarily large carbon 
footprint for computationally oriented 
astrophysical research. The importance of 
rapid prototyping seems to outweigh the 
ecological impact of inefficient code.

The carbon footprint of computational 
astrophysics can be reduced substantially 
by running on GPUs. The development 
time of such code, however, requires 
considerable expertise, and it takes years 
of research15 before a tuned instrument is 
production-ready16.

As an alternative, one could run 
concurrently using multiple cores, rather 
than a single thread. It is important 
to share resources and to prevent the 
monopolization of powerful workstations. 
To reduce runtime and CO2 emission, the 
environmentally concerned researcher 
might want to reconsider standard Python 
and either optimize using high-performance 
libraries or adopt a more environmentally 
friendly (compiled) alternative. Several 
interesting alternatives exist, such as Alice, 
Julia, Rust and Swift. These languages 
offer the flexibility of Python but with the 
performance of compiled C++. Educators 
may want to reconsider teaching Python to 
university students.

But maybe, while being aware of the 
ecological impact of high-performance 
computing, we should be more reluctant 
to perform specific calculations, and 
consider the environmental consequences 
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Fig. 3 | Programming language efficiency as a function of the time to solution. Here we used the 
suite of direct N-body codes from http://www.Nbabel.org/ to measure execution speed and to 
determine the relative energy efficiency for each programming language using Table 3 of ref. 12. Different 
language families are indicated with colours: green and blue for third-generation languages, orange for 
special-purpose and red for scripting languages. The dotted red curve gives a linear relation between  
the time to solution and carbon footprint (~5 kg CO2 per day). The calculations were performed on  
a 2.7 GHz Intel Xeon e-2176M CPU and NVIDIA Tesla P100 GPU.
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before starting a simulation. Scientists 
have a responsibility in assuring that their 
computing set-up is mostly harmless to  
the environment. ❐
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