
819

comment

The ecological impact of high-performance
computing in astrophysics
Computer use in astronomy continues to increase, and so also its impact on the environment. To minimize the
effects, astronomers should avoid interpreted scripting languages such as Python, and favour the optimal use of
energy-efficient workstations.

Simon Portegies Zwart

The third pillar of science, simulation
and modelling, already had a
solid foothold in fourth-century

astronomy1, but this discipline flourished
with the introduction of digital computers.
One of its challenges is the carbon emission
resulting from this increased popularity.
Generally unrecognized, the magnitude
of the carbon footprint of computing in
astrophysics should be emphasized. One
purpose of this Comment is to raise this
awareness, and present best practices
for (super)computer usage and choice of
programming language.

Carbon footprint of computing
In Fig. 1, we compare the average human
production of CO2 (red lines) with
astronomical activities, such as telescope
operation, the emission of an average
astronomer2 and finishing a (four year)
PhD3 (green points). While large observing
facilities are cutting down on carbon
footprint by offering remote operation, the
increased speed of computing resources can
hardly be compensated by their increased
efficiency. This also is demonstrated in
Fig. 1, where we compare measurements
for several popular astronomical computing
activities (turquoise points). These
measurements are generated using the
Astrophysical Multipurpose Software
Environment4, in which most of the work is
done in optimized and compiled code. We
include simulations of the Sun’s evolution
from birth to the asymptotic giant branch
using a Henyey solver5 and parametrized
population synthesis6.

We also present in Fig. 1 timings for
simulating the evolution of a self-gravitating
system of a million equal-mass
point-particles in a virialized Plummer
sphere for 10 dynamical timescales (labelled
‘N-body’). These calculations are performed
by direct integration (with the fourth-order
Hermite algorithm) and using a hierarchical
tree-code (with leapfrog algorithm). Both
calculations are performed on a CPU as well

as with a graphics processing unit (GPU).
Not surprisingly, the tree-code running a
single GPU (second turquoise point from

the left) is about a million times faster than
the direct-force calculations on a CPU
(right-most turquoise point); one factor

Time to solution (day)

N-body tree code (GPU)

N-body tree code
(CPU)

N-body direct (GPU)

1 core
Scripting language

running single-core

Maximum per-capita

country average production

Global per-capita production in 2017

Population synthesis code

Stellar evolution code

 PhD
Astronomer

ALMA
LIGO

10–5
10–5

10–3

10–1

101

103

105

107

10–3 10–1 101 103 105

C
O

2 p
ro

du
ct

io
n

(k
g)

Falcon 9 launch

106 cores

8-hour air travel

N-body
direct (CPU)

Fig. 1 | Carbon production of a number of common activities among astronomers. CO2 production
as a function of the time to solution for a variety of popular computational techniques employed in
astrophysics (turquoise data points), and other activities common among astronomers2,3 (green data
points). The solid red curve gives the individual world-average production in 2017, whereas the dotted
red curve give the maximum per-capita country average. The Laser Interferometer Gravitational-Wave
Observatory (LIGO) carbon production is taken over its first 106-day run (using ~180 kW)17, and for the
Atacama Large Millimeter/submillimeter Array (ALMA) a 1-year average18. A Falcon 9 launch lasts about
32 minutes during which ~110,000 litres of highly refined kerosene is burned. The tree-code running on
a GPU was performed using N = 220 particles. The direct N-body code on a CPU (right-most turquoise
data point) was run with N = 213 particles15, and the other codes with N = 216 particles. All performance
results were scaled to N = 220 particles. The calculations were performed for 10 N-body time units19. The
energy consumption was computed using the scaling relations of ref. 20 and converted from KWh to CO2
using 0.283 kWh kg–1. The turquoise dotted curve shows the estimated carbon emission when these
calculations would have been implemented in Python running on a single core. The burgundy curve
shows how the performance and carbon production changes while increasing the number of compute
cores from 1 to 106 (out of a total of 7,299,072 of the world’s fastest computer, left-most point) using the
performance model of ref. 21. Figure created with Matplotlib22.

Nature astroNomy | VOL 4 | SePTeMber 2020 | 819–822 | www.nature.com/natureastronomy

http://crossmark.crossref.org/dialog/?doi=10.1038/s41550-020-1208-y&domain=pdf
http://www.nature.com/natureastronomy

820

comment

of 1,000 originates from the many cores of
the GPU7, and the other from the favourite
scaling of the tree algorithm8. The trend in
carbon production is also not surprising:
a shorter runtime leads to less carbon.
The emission of carbon while running a
powerful workstation is comparable to the
world’s per-capita average.

Now consider the single-core versus
multi-core performance of the direct
N-body code in Fig. 1 (burgundy line).
The turquoise data point to the right gives
the single-core workstation performance,
but the burgundy data point below it shows
the single-core performance on today’s
largest supercomputer. The curve gives the
multi-core scaling up to 106 cores (left-most
data point). The relation between the
computing time (time to solution) and the
carbon footprint of the calculations is not
linear. When running a single core, the
supercomputer produces less carbon than a
workstation (we assumed the supercomputer
to be used to capacity by other users).
Adopting more cores results in better
performance, at the cost of producing more
carbon. Similar performance to a single
GPU is reached when running 1,000 cores,
but when the number of cores is further
increased, the performance continues
to grow at an enormous cost in carbon
production. When running a million
cores, the emission of running a
supercomputer by far exceeds air travel
and approaches the carbon footprint of
launching a rocket into space.

Concurrency for lower emission
When parallelism is optimally utilized,
the highest performance is reached for
the maximum core count, but the optimal
combination of performance and carbon
emission is reached for ~1,000 cores, after
which the supercomputer starts to produce
more carbon than a workstation. The
improved energy characteristics for parallel
operation and its eventual decline is further
illustrated in the Z-plot presented in
Fig. 2, showing energy consumption as a
function of the performance of a 96-core
(192 hyperthreaded) workstation.

Running single core on a workstation is
inefficiently slow and produces more carbon
than running multi-core. Performance
continues to increase with core count until
optimal energy consumption is reached
when all physical cores are occupied (in
Fig. 2 this happens around 96 physical
cores, indicated by the green star). Runtime
continues to drop when also using virtual
cores, but at the cost of higher emission.
Note that the carbon emission of the parallel
calculation (burgundy curve in Fig. 1)
does not drop with increased core count,

because we assumed that the supercomputer
is shared, whereas we assumed that the
workstation used in Fig. 2 was private.

Scaling our measurements of the
compute performance and energy
consumption with the clock frequency
of the processor (blue and red points for
each core count) reduces wall-clock time,
but costs considerably more energy (see also
ref. 9). Although not shown here, reducing
the clock speed slows down the computer
while increasing the energy requirement.

If the climate is a concern, we should
prevent loading a supercomputer to capacity.
The wish for more environmentally friendly
supercomputers triggered the contest to
find the greenest supercomputers10. Since
the inauguration of the so-called Green500
ranking, the performance per watt has
increased from 0.23 TFLOP kW–1 by a Blue
Gene/L in 2007 (ref. 10) to more than 20
TFLOP kW–1 by the MN-3 core server today
(https://www.top500.org/lists/green500/).
This enormous increase in efficiency is
mediated by the further development of
low-power many-core architectures, such

as the GPU. The efficiency of modern
workstations, however, has been lagging.
A single core of the Intel Xeon E7-8890,
for example, runs at ~4 TFLOP kW–1, and
the popular Intel core-i7 920 tops only 0.43
TFLOP kW–1. Workstation processors have
hardly kept up with the improved carbon
characteristics of GPUs and supercomputers.

For optimal operation, run a few
(~1,000) cores on a supercomputer or a
GPU-equipped workstation. When running
a workstation, use as many physical cores as
possible, but leave the virtual cores alone.
Over-clocking reduces wall-clock time but at
a greater environmental impact.

the role of language on the ecology
So far, we assumed that astrophysicists
invest in full code optimization that uses
the hardware optimally. However, in
practice, most effort is generally invested
in developing the research question, after
which designing, writing and running the
code is not the primary concern. This holds
as long as the code writing and execution
are sufficiently fast. As a consequence,

Performance (TFLOP s–1)

0

0.025

0.050

0.075

0.100

0.125

0.150

0.175

En
er

gy
 to

 s
ol

ut
io

n
(k

W
)

1 core

4 cores

64 cores

192 cores

Constant
performace

Constant energy consumption

10–1 100 101

2.2 GHz
3.0 GHz
4.0 GHz

Fig. 2 | energy to solution as a function of code performance. The Z-plot shows the number of
processors (and processor frequencies) and the energy consumed as a function of performance20.
The runs (green dots) were performed using a quad CPU 24-core (48 hyperthreaded) Intel Xeon
e7-8890 v4 at 2.20 GHz calculated with 1, 2, 4, ..., 192 cores. Curves of constant core-count are indicated
for 1, 4, 64 and 192 cores (black curves). The other coloured points (blue and red) give the relation for
overclocking the processor to 3 GHz and 4 GHz, scaled from the measured points using overclocking
emission relations from ref. 23. Dotted curves give constant energy-requirement-to-solution (horizontal)
and sustained processor performance (vertical). The star at the crossing of these two curves was
measured using 96 physical cores. The calculations were performed using a bulirsch–Stoer algorithm
with a Leapfrog integration24 at a tolerance in the energy E of dE/E = 10–8 using a word length of 64 bits.

Nature astroNomy | VOL 4 | SePTeMber 2020 | 819–822 | www.nature.com/natureastronomy

https://www.top500.org/lists/green500/
http://www.nature.com/natureastronomy

821

comment

interpreted scripting languages, such as
Python11, rapidly grow in popularity.

According to the Astronomical Source
Code Library (ASCL, https://ascl.net/),
about half of the deposited code is written
in Python, Java, IDL or Mathematica. Only
18%, 17% and 16% of codes are written
in Fortran, C and C++, respectively.
Python is popular because it is interactive,
strongly and dynamicaly typed, modular,
object-oriented and portable. But most of
all, Python is easy to learn and it gets the job
done without much effort, whereas writing
in C++ or Fortran can be rather elaborate.

One major disadvantage of Python,
however, is its relatively slow speed
compared with compiled languages. In
Fig. 3, we present an estimate of the amount
of CO2 produced when performing a direct
N-body calculation of 214 equal-mass
particles in a virialized Plummer sphere.
Each calculation was performed for the
same amount of time and scaled to 1 day for
the implementation in C++.

Python (and to a lesser extent Java) takes
considerably more time to run and produces
more CO2 than C++ or Fortran. Python and
Java are also less efficient in terms of energy

per operation than compiled languages12,
which explains the offset away from the
dotted curve (Fig. 3).

The popularity of Python is disquieting.
Among 27 tested languages, only Perl and
Lua are slower12. The runtime performance
of Python can be improved in a myriad
of ways. Most popular are the Numba13 or
NumPy14 libraries, which offer pre-compiled
code for common operations. In principle,
Numba and NumPy can lead to an
enormous increase in speed and reduced
carbon emission. However, these libraries
are rarely adopted for reducing runtime
by more than an order of magnitude
(according to the ASCL). NumPy, for
example, is mostly used for its advanced
array handling and support functions. Using
these will reduce runtime and, therefore,
also carbon emission, but optimization is
generally stopped as soon as the calculation
runs within an unconsciously determined
reasonable amount of time, such as the
coffee-refill timescale or a holiday weekend.

In Fig. 1 we presented an estimate
of the carbon emission as a function of
runtime for Python implementations
(see turquoise dotted curve) of popular

applications. The continuing popularity
of Python should be juxtaposed with the
ecological consequences. We teach Python
to students, and researchers accept the
performance punch without realizing the
ecological impact. Using C++ and Fortran
instead of Python would save enormously
in terms of runtime and CO2 production.
Another reason why students should not
learn to program using an inefficient
language running on slow hardware but
start with the fastest language on the biggest
computers is provided by Jevons paradox.
This paradox implies that a gradual increase
in efficiency or capacity leads to a resource’s
oversubscription without added benefit:
a gradual increase in computer speed and
language efficiency lead to sub-optimal code.

Conclusions
The popularity of computing in research is
proliferating. This impacts the environment
by increased carbon emission. Running
scripts on a single core of a powerful
workstation is not environmentally friendly.
Still, this mode of operation seems to be
most popular among astronomers, as it
is stimulated by the educational system
and mediated by the ease of use and the
availability of the hardware. This trend
leads to an unnecessarily large carbon
footprint for computationally oriented
astrophysical research. The importance of
rapid prototyping seems to outweigh the
ecological impact of inefficient code.

The carbon footprint of computational
astrophysics can be reduced substantially
by running on GPUs. The development
time of such code, however, requires
considerable expertise, and it takes years
of research15 before a tuned instrument is
production-ready16.

As an alternative, one could run
concurrently using multiple cores, rather
than a single thread. It is important
to share resources and to prevent the
monopolization of powerful workstations.
To reduce runtime and CO2 emission, the
environmentally concerned researcher
might want to reconsider standard Python
and either optimize using high-performance
libraries or adopt a more environmentally
friendly (compiled) alternative. Several
interesting alternatives exist, such as Alice,
Julia, Rust and Swift. These languages
offer the flexibility of Python but with the
performance of compiled C++. Educators
may want to reconsider teaching Python to
university students.

But maybe, while being aware of the
ecological impact of high-performance
computing, we should be more reluctant
to perform specific calculations, and
consider the environmental consequences

Time to solution (day)

Fortran

C++

 Java
Ada

Swift

Python

CUDA single-core

CUDA multi-core

Numba

10–1
100

101

102

103

100 101 102

C
O

2 p
ro

du
ct

io
n

(k
g)

Fig. 3 | Programming language efficiency as a function of the time to solution. Here we used the
suite of direct N-body codes from http://www.Nbabel.org/ to measure execution speed and to
determine the relative energy efficiency for each programming language using Table 3 of ref. 12. Different
language families are indicated with colours: green and blue for third-generation languages, orange for
special-purpose and red for scripting languages. The dotted red curve gives a linear relation between
the time to solution and carbon footprint (~5 kg CO2 per day). The calculations were performed on
a 2.7 GHz Intel Xeon e-2176M CPU and NVIDIA Tesla P100 GPU.

Nature astroNomy | VOL 4 | SePTeMber 2020 | 819–822 | www.nature.com/natureastronomy

https://ascl.net/
http://www.NBabel.org/
http://www.nature.com/natureastronomy

822

comment

before starting a simulation. Scientists
have a responsibility in assuring that their
computing set-up is mostly harmless to
the environment. ❐

Simon Portegies Zwart    ✉
Leiden Observatory, Leiden University, Leiden,
the Netherlands.
✉e-mail: spz@strw.leidenuniv.nl

Published online: 10 September 2020
https://doi.org/10.1038/s41550-020-1208-y

References
 1. Ossendrijver, M. Science 351, 482–484 (2016).
 2. Stevens, A. R. H., Bellstedt, S., Elahi, P. J. & Murphy, M. T.

Nat. Astron. https://doi.org/10.1038/s41550-020-1169-1
(2020).

 3. Achten, W. M., Almeida, J. & Muys, B. Ecol. Indic. 34,
352–355 (2013).

 4. Portegies Zwart, S. & McMillan, S. Astrophysical Recipes: The Art
of AMUSE (IOP Publishing, 2018).

 5. Paxton, B. et al. Astrophys. J. Suppl. Ser. 192, 3–38 (2011).

 6. Portegies Zwart, S. F. & Verbunt, F. Astron. Astrophys. 309,
179–196 (1996).

 7. Gaburov, E., Bédorf, J. & Portegies Zwart, S. Procedia Comput. Sci.
1, 1119–1127 (2010).

 8. Barnes, J. & Hut, P. Nature 324, 446–449 (1986).
 9. Hofmann, J., Hager, G. & Fey, D. P. In High Performance

Computing (eds Yokota, R. et al.) 22–43 (Springer, 2018).
 10. Feng, W. & Cameron, K. Computer 40, 50–55 (2007).
 11. Van Rossum, G. & Drake, F. L. Jr Python Reference Manual

(Centrum voor Wiskunde en Informatica, 1995).
 12. Pereira, R. et al. In Proc. 10th ACM SIGPLAN Int. Conf. on

Software Language Engineering SLE 2017 256–267 (Association
for Computing Machinery, 2017).

 13. Lam, S. K., Pitrou, A. & Seibert, S. In Proc. Second Workshop on
the LLVM Compiler Infrastructure in HPC LLVM ’15
1–6 (Association for Computing Machinery, 2015).

 14. Oliphant, T. E. A Guide to NumPy Vol. 1 (Trelgol Publishing, 2006).
 15. Portegies Zwart, S. F., Belleman, R. G. & Geldof, P. M.

New Astron. 12, 641–650 (2007).
 16. Bédorf, J. et al. In Proc. Int. Conf. for High Performance Computing,

Networking, Storage and Analysis SC ’14 54–65 (IEEE, 2014).
 17. Advanced LIGO Reference Design: LIGO M060056-v2

(LIGO Scientific Collaboration, 2011).
 18. D’Addario, L. in Proceedings of Exascale Radio Astronomy

302.01 (American Astronomical Society, 2014).
 19. Heggie, D. C. & Mathieu, R. D. in The Use of Supercomputers

in Stellar Dynamics (eds Hut, P. & McMillan, S. L. W.) 233–235
(Springer, 1986).

 20. Wittmann, M., Hager, G., Zeiser, T., Treibig, J. & Wellein, G.
Concurr. Comput. Pract. Exper. 28, 2295–2315 (2016).

 21. Heinrich, F. C. et al. in IEEE International Conference on Cluster
Computing 92–102 (IEEE, 2017).

 22. Hunter, J. D. Comput. Sci. Eng. 9, 90–95 (2007).
 23. Cutress, I. The Intel Xeon W-3175X review: 28 unlocked cores,

$2999. AnandTech https://www.anandtech.com/show/13748
(30 January 2019).

 24. Portegies Zwart, S. & Boekholt, T. Astrophys. J. Lett. 785,
L3–L7 (2014).

Acknowledgements
I thank A. Allen for providing data on the ASCL
language usage and L. Butscher for comments and
inviting me to present this discussion at the 2020
European Astronomical Society conference. Part of
this work was performed using resources provided
by the Academic Leiden Interdisciplinary Cluster
Environment (Alice), TITAN (LANL) and LGM-II
(NWO grant number 621.016.701) We used the
Python, Matplotlib, NumPy, Numba and AMUSE
open-source packages.

Competing interests
The author declares no competing interests.

Nature astroNomy | VOL 4 | SePTeMber 2020 | 819–822 | www.nature.com/natureastronomy

http://orcid.org/0000-0001-5839-0302
mailto:spz@strw.leidenuniv.nl
https://doi.org/10.1038/s41550-020-1208-y
https://doi.org/10.1038/s41550-020-1169-1
https://www.anandtech.com/show/13748
http://www.nature.com/natureastronomy

	The ecological impact of high-performance computing in astrophysics
	Carbon footprint of computing
	Concurrency for lower emission
	The role of language on the ecology
	Conclusions
	Acknowledgements
	Fig. 1 Carbon production of a number of common activities among astronomers.
	Fig. 2 Energy to solution as a function of code performance.
	Fig. 3 Programming language efficiency as a function of the time to solution.

