1 |
97d86a8f
|
Alessandro_N
|
|
2 |
|
|
|
3 |
|
|
|
4 |
|
|
|
5 |
|
|
|
6 |
|
|
|
7 |
|
|
|
8 |
|
|
|
9 |
|
|
|
10 |
|
|
|
11 |
|
|
|
12 |
|
|
|
13 |
|
|
|
14 |
|
|
|
15 |
|
|
|
16 |
|
|
|
17 |
|
|
|
18 |
|
|
|
19 |
|
|
|
20 |
|
|
'''
|
21 |
|
|
This script updates the content of a fits table, adding new columns
|
22 |
|
|
and/or rows (i.e. objects) to it, by considering as input a user-defined ASCII table.
|
23 |
|
|
|
24 |
|
|
The new columns (rows) defined in the ascii file are appended at the end
|
25 |
|
|
(bottom) of the fits table.
|
26 |
|
|
|
27 |
|
|
IMPORTANT: The 1st line of the ASCII table must contain the names
|
28 |
|
|
of the columns, and must be UNCOMMENTED!
|
29 |
|
|
|
30 |
|
|
NOTE: Ra and DEC must be in **decimal degrees**, both in FITS and
|
31 |
|
|
ASCII tables.
|
32 |
|
|
|
33 |
|
|
The syntax is:
|
34 |
|
|
|
35 |
|
|
$ python edit_FITS.py <table>.fits <ascii_file>
|
36 |
|
|
|
37 |
|
|
@author: Alessandro NASTASI for IAS - IDOC
|
38 |
|
|
@date: 21/05/2015
|
39 |
|
|
'''
|
40 |
|
|
__author__ = "Alessandro Nastasi"
|
41 |
|
|
__credits__ = ["Alessandro Nastasi"]
|
42 |
|
|
__license__ = "GPL"
|
43 |
|
|
__version__ = "1.0"
|
44 |
|
|
__date__ = "21/05/2015"
|
45 |
|
|
|
46 |
|
|
import numpy as np
|
47 |
|
|
import os, sys, re, time
|
48 |
|
|
import string
|
49 |
|
|
import asciidata
|
50 |
|
|
import pyfits
|
51 |
|
|
from datetime import date
|
52 |
|
|
|
53 |
|
|
|
54 |
|
|
|
55 |
|
|
|
56 |
|
|
import astCoords
|
57 |
|
|
|
58 |
|
|
class bcolors:
|
59 |
|
|
HEADER = '\033[95m'
|
60 |
|
|
OKBLUE = '\033[94m'
|
61 |
|
|
OKGREEN = '\033[92m'
|
62 |
|
|
WARNING = '\033[93m'
|
63 |
|
|
FAIL = '\033[91m'
|
64 |
|
|
ENDC = '\033[0m'
|
65 |
|
|
|
66 |
|
|
|
67 |
|
|
_FIELDS_DICTIONARY = {
|
68 |
|
|
'INDEX': { 'format': 'I', 'unit': 'None' },
|
69 |
|
|
'COORD_SOURCE': { 'format': '5A', 'unit': 'None' },
|
70 |
|
|
'x':{ 'format': 'E', 'unit': 'None' },
|
71 |
|
|
'y':{ 'format': 'E', 'unit': 'None' },
|
72 |
|
|
'z':{ 'format': 'E', 'unit': 'None' },
|
73 |
|
|
|
74 |
|
|
|
75 |
|
|
'ACT_INDEX': { 'format': 'I', 'unit': 'None' },
|
76 |
|
|
'INDEX_ACT': { 'format': 'I', 'unit': 'None' },
|
77 |
|
|
'CATALOG': { 'format': '7A', 'unit': 'None' },
|
78 |
|
|
|
79 |
|
|
|
80 |
|
|
|
81 |
|
|
|
82 |
|
|
|
83 |
|
|
'SNR': { 'format': 'E', 'unit': 'None' },
|
84 |
|
|
|
85 |
|
|
'ERR_REDSHIFT': { 'format': 'E', 'unit': 'None' },
|
86 |
|
|
|
87 |
|
|
'M500': { 'format': 'E', 'unit': '10^14 h70^-1 solar mass' },
|
88 |
|
|
'ERR_M500': { 'format': 'E', 'unit': '10^14 h70^-1 solar mass' },
|
89 |
|
|
'YSZ': { 'format': 'E', 'unit': '10^-6 arcmin squared' },
|
90 |
|
|
'ERR_YSZ': { 'format': 'E', 'unit': '10^-6 arcmin squared' },
|
91 |
|
|
'THETA': { 'format': 'E', 'unit': 'arcmin' },
|
92 |
|
|
|
93 |
|
|
|
94 |
|
|
'ACT_CATALOG': { 'format': '7A', 'unit': 'None' },
|
95 |
|
|
'ACT_NAME': { 'format': '18A', 'unit': 'None' },
|
96 |
|
|
'ACT_GLON': { 'format': 'E', 'unit': 'degrees' },
|
97 |
|
|
'ACT_GLAT': { 'format': 'E', 'unit': 'degrees' },
|
98 |
|
|
'ACT_RA': { 'format': 'E', 'unit': 'degrees' },
|
99 |
|
|
'ACT_DEC': { 'format': 'E', 'unit': 'degrees' },
|
100 |
|
|
'ACT_SNR': { 'format': 'E', 'unit': 'None' },
|
101 |
|
|
'ACT_REDSHIFT': { 'format': 'E', 'unit': 'None' },
|
102 |
|
|
'ACT_ERR_REDSHIFT': { 'format': 'E', 'unit': 'None' },
|
103 |
|
|
'ACT_REDSHIFT_TYPE': { 'format': '5A', 'unit': 'None' },
|
104 |
|
|
'ACT_REDSHIFT_REF': { 'format': '19A', 'unit': 'None' },
|
105 |
|
|
'ACT_M500': { 'format': 'E', 'unit': '10^14 h^-1 solar mass' },
|
106 |
|
|
'ACT_ERR_M500': { 'format': 'E', 'unit': '10^14 h^-1 solar mass' },
|
107 |
|
|
'ACT_YSZ': { 'format': 'E', 'unit': '10^-6 arcmin squared' },
|
108 |
|
|
'ACT_ERR_YSZ': { 'format': 'E', 'unit': '10^-6 arcmin squared' },
|
109 |
|
|
'ACT_THETA': { 'format': 'E', 'unit': 'arcmin' },
|
110 |
|
|
'ACT_PAPER': { 'format': '56A', 'unit': 'None' },
|
111 |
|
|
|
112 |
|
|
|
113 |
|
|
'INDEX_AMI': { 'format': 'I', 'unit': 'None' },
|
114 |
|
|
'AMI_INDEX': { 'format': 'I', 'unit': 'None' },
|
115 |
|
|
|
116 |
|
|
|
117 |
|
|
|
118 |
|
|
|
119 |
|
|
|
120 |
|
|
|
121 |
|
|
|
122 |
|
|
|
123 |
|
|
|
124 |
|
|
|
125 |
|
|
|
126 |
|
|
'AMI_NAME': { 'format': '18A', 'unit': 'None' },
|
127 |
|
|
'AMI_RA': { 'format': 'E', 'unit': 'Degrees' },
|
128 |
|
|
'AMI_DEC': { 'format': 'E', 'unit': 'Degrees' },
|
129 |
|
|
'AMI_GLON': { 'format': 'E', 'unit': 'Degrees' },
|
130 |
|
|
'AMI_GLAT': { 'format': 'E', 'unit': 'Degrees' },
|
131 |
|
|
'AMI_REDSHIFT': { 'format': 'E', 'unit': 'None' },
|
132 |
|
|
'AMI_REDSHIFT_TYPE': { 'format': '5A', 'unit': 'None' },
|
133 |
|
|
'AMI_REDSHIFT_REF': { 'format': '36A', 'unit': 'None' },
|
134 |
|
|
'AMI_ALT_NAME': { 'format': '60A', 'unit': 'None' },
|
135 |
|
|
|
136 |
|
|
|
137 |
|
|
'INDEX_CARMA': { 'format': 'I', 'unit': 'None' },
|
138 |
|
|
'CARMA_INDEX': { 'format': 'I', 'unit': 'None' },
|
139 |
|
|
|
140 |
|
|
|
141 |
|
|
|
142 |
|
|
|
143 |
|
|
|
144 |
|
|
|
145 |
|
|
|
146 |
|
|
|
147 |
|
|
|
148 |
|
|
|
149 |
|
|
'CARMA_NAME': { 'format': '18A', 'unit': 'None' },
|
150 |
|
|
'CARMA_RA': { 'format': 'E', 'unit': 'Degrees' },
|
151 |
|
|
'CARMA_DEC': { 'format': 'E', 'unit': 'Degrees' },
|
152 |
|
|
'CARMA_GLON': { 'format': 'E', 'unit': 'Degrees' },
|
153 |
|
|
'CARMA_GLAT': { 'format': 'E', 'unit': 'Degrees' },
|
154 |
|
|
'CARMA_REDSHIFT': { 'format': 'E', 'unit': 'None' },
|
155 |
|
|
'CARMA_REDSHIFT_TYPE': { 'format': '5A', 'unit': 'None' },
|
156 |
|
|
'CARMA_REDSHIFT_REF': { 'format': '36A', 'unit': 'None' },
|
157 |
|
|
'CARMA_M500': { 'format': 'E', 'unit': '10^14 h70^-1 solar mass' },
|
158 |
|
|
'CARMA_ERR_M500': { 'format': 'E', 'unit': '10^14 h70^-1 solar mass' },
|
159 |
|
|
|
160 |
|
|
|
161 |
|
|
'PSZ1_INDEX': { 'format': 'I', 'unit': 'None' },
|
162 |
|
|
'INDEX_PSZ1': { 'format': 'I', 'unit': 'None' },
|
163 |
|
|
'NAME': { 'format': '18A', 'unit': 'None' },
|
164 |
|
|
'GLON': { 'format': 'D', 'unit': 'degrees' },
|
165 |
|
|
'GLAT': { 'format': 'D', 'unit': 'degrees' },
|
166 |
|
|
'RA': { 'format': 'D', 'unit': 'degrees' },
|
167 |
|
|
'DEC': { 'format': 'D', 'unit': 'degrees' },
|
168 |
|
|
'RA_MCXC': { 'format': 'E', 'unit': 'degrees' },
|
169 |
|
|
'DEC_MCXC': { 'format': 'E', 'unit': 'degrees' },
|
170 |
|
|
'REDSHIFT': { 'format': 'E', 'unit': 'None' },
|
171 |
|
|
'REDSHIFT_TYPE': { 'format': '5A', 'unit': 'None' },
|
172 |
|
|
'REDSHIFT_SOURCE': { 'format': 'I', 'unit': 'None' },
|
173 |
|
|
'REDSHIFT_REF': { 'format': '36A', 'unit': 'None' },
|
174 |
|
|
'ALT_NAME': { 'format': '66A', 'unit': 'None' },
|
175 |
|
|
'YZ_500': { 'format': 'E', 'unit': '10^-4 arcmin squared' },
|
176 |
|
|
'ERRP_YZ_500': { 'format': 'E', 'unit': '10^-4 arcmin squared' },
|
177 |
|
|
'ERRM_YZ_500': { 'format': 'E', 'unit': '10^-4 arcmin squared' },
|
178 |
|
|
'M_YZ_500': { 'format': 'E', 'unit': '10^14 solar mass' },
|
179 |
|
|
'ERRP_M_YZ_500': { 'format': 'E', 'unit': '10^14 solar mass' },
|
180 |
|
|
'ERRM_M_YZ_500': { 'format': 'E', 'unit': '10^14 solar mass' },
|
181 |
|
|
'S_X': { 'format': 'E', 'unit': 'erg/s/cm2' },
|
182 |
|
|
'ERR_S_X': { 'format': 'E', 'unit': 'erg/s/cm2' },
|
183 |
|
|
'Y_PSX_500': { 'format': 'E', 'unit': '10^-4 arcmin squared' },
|
184 |
|
|
'SN_PSX': { 'format': 'E', 'unit': 'None' },
|
185 |
|
|
'PIPELINE': { 'format': 'I', 'unit': 'None' },
|
186 |
|
|
'PIPE_DET': { 'format': 'I', 'unit': 'None' },
|
187 |
|
|
'PCCS': { 'format': 'L', 'unit': 'None' },
|
188 |
|
|
'VALIDATION': { 'format': 'I', 'unit': 'None' },
|
189 |
|
|
'ID_EXT': { 'format': '25A', 'unit': 'None' },
|
190 |
|
|
'POS_ERR': { 'format': 'E', 'unit': 'arcmin' },
|
191 |
|
|
|
192 |
|
|
'COSMO': { 'format': 'L', 'unit': 'None' },
|
193 |
|
|
'COMMENT': { 'format': 'L', 'unit': 'None' },
|
194 |
|
|
'QN': { 'format': 'E', 'unit': 'None' },
|
195 |
|
|
|
196 |
|
|
'PSZ1_NAME': { 'format': '18A', 'unit': 'None' },
|
197 |
|
|
'PSZ1_GLON': { 'format': 'D', 'unit': 'degrees' },
|
198 |
|
|
'PSZ1_GLAT': { 'format': 'D', 'unit': 'degrees' },
|
199 |
|
|
'PSZ1_RA': { 'format': 'D', 'unit': 'degrees' },
|
200 |
|
|
'PSZ1_DEC': { 'format': 'D', 'unit': 'degrees' },
|
201 |
|
|
'PSZ1_RA_MCXC': { 'format': 'E', 'unit': 'degrees' },
|
202 |
|
|
'PSZ1_DEC_MCXC': { 'format': 'E', 'unit': 'degrees' },
|
203 |
|
|
'PSZ1_REDSHIFT': { 'format': 'E', 'unit': 'None' },
|
204 |
|
|
'PSZ1_REDSHIFT_TYPE': { 'format': '5A', 'unit': 'None' },
|
205 |
|
|
'PSZ1_REDSHIFT_SOURCE': { 'format': 'I', 'unit': 'None' },
|
206 |
|
|
'PSZ1_REDSHIFT_REF': { 'format': '36A', 'unit': 'None' },
|
207 |
|
|
'PSZ1_ALT_NAME': { 'format': '66A', 'unit': 'None' },
|
208 |
|
|
'PSZ1_YZ_500': { 'format': 'E', 'unit': '10^-4 arcmin squared' },
|
209 |
|
|
'PSZ1_ERRP_YZ_500': { 'format': 'E', 'unit': '10^-4 arcmin squared' },
|
210 |
|
|
'PSZ1_ERRM_YZ_500': { 'format': 'E', 'unit': '10^-4 arcmin squared' },
|
211 |
|
|
'PSZ1_M_YZ_500': { 'format': 'E', 'unit': '10^14 solar mass' },
|
212 |
|
|
'PSZ1_ERRP_M_YZ_500': { 'format': 'E', 'unit': '10^14 solar mass' },
|
213 |
|
|
'PSZ1_ERRM_M_YZ_500': { 'format': 'E', 'unit': '10^14 solar mass' },
|
214 |
|
|
'PSZ1_S_X': { 'format': 'E', 'unit': 'erg/s/cm2' },
|
215 |
|
|
'PSZ1_ERR_S_X': { 'format': 'E', 'unit': 'erg/s/cm2' },
|
216 |
|
|
'PSZ1_Y_PSX_500': { 'format': 'E', 'unit': '10^-4 arcmin squared' },
|
217 |
|
|
'PSZ1_SN_PSX': { 'format': 'E', 'unit': 'None' },
|
218 |
|
|
'PSZ1_PIPELINE': { 'format': 'I', 'unit': 'None' },
|
219 |
|
|
'PSZ1_PIPE_DET': { 'format': 'I', 'unit': 'None' },
|
220 |
|
|
'PSZ1_PCCS': { 'format': 'L', 'unit': 'None' },
|
221 |
|
|
'PSZ1_VALIDATION': { 'format': 'I', 'unit': 'None' },
|
222 |
|
|
'PSZ1_ID_EXT': { 'format': '25A', 'unit': 'None' },
|
223 |
|
|
'PSZ1_POS_ERR': { 'format': 'E', 'unit': 'arcmin' },
|
224 |
|
|
'PSZ1_SNR': { 'format': 'E', 'unit': 'None' },
|
225 |
|
|
'PSZ1_COSMO': { 'format': 'L', 'unit': 'None' },
|
226 |
|
|
'PSZ1_COMMENT': { 'format': 'L', 'unit': 'None' },
|
227 |
|
|
'PSZ1_QN': { 'format': 'E', 'unit': 'None' },
|
228 |
|
|
|
229 |
|
|
|
230 |
|
|
'PSZ2_INDEX': { 'format': 'I', 'unit': 'None' },
|
231 |
|
|
'INDEX_PSZ2': { 'format': 'I', 'unit': 'None' },
|
232 |
|
|
|
233 |
|
|
|
234 |
|
|
|
235 |
|
|
|
236 |
|
|
|
237 |
|
|
|
238 |
|
|
|
239 |
|
|
|
240 |
|
|
|
241 |
|
|
'PCCS2': { 'format': 'L', 'unit': 'None' },
|
242 |
|
|
'PSZ': { 'format': 'I', 'unit': 'None' },
|
243 |
|
|
'IR_FLAG': { 'format': 'I', 'unit': 'None' },
|
244 |
|
|
'Q_NEURAL': { 'format': 'E', 'unit': 'None' },
|
245 |
|
|
'Y5R500': { 'format': 'E', 'unit': '10^-3 arcmin^2' },
|
246 |
|
|
'Y5R500_ERR': { 'format': 'E', 'unit': '10^-3 arcmin^2' },
|
247 |
|
|
'PSZ2_VALIDATION': { 'format': 'I', 'unit': 'None' },
|
248 |
|
|
'REDSHIFT_ID': { 'format': '25A', 'unit': 'None' },
|
249 |
|
|
|
250 |
|
|
'MSZ': { 'format': 'E', 'unit': '10^14 Msol' },
|
251 |
|
|
'MSZ_ERR_UP': { 'format': 'E', 'unit': '10^14 Msol' },
|
252 |
|
|
'MSZ_ERR_LOW': { 'format': 'E', 'unit': '10^14 Msol' },
|
253 |
|
|
'MCXC': { 'format': '25A', 'unit': 'None' },
|
254 |
|
|
'REDMAPPER': { 'format': '25A', 'unit': 'None' },
|
255 |
|
|
'ACT': { 'format': '25A', 'unit': 'None' },
|
256 |
|
|
'SPT': { 'format': '25A', 'unit': 'None' },
|
257 |
|
|
'WISE_SIGNF': { 'format': 'E', 'unit': 'None' },
|
258 |
|
|
'WISE_FLAG': { 'format': 'I', 'unit': 'None' },
|
259 |
|
|
'AMI_EVIDENCE': { 'format': 'E', 'unit': 'None' },
|
260 |
|
|
|
261 |
|
|
'PSZ2_COMMENT': { 'format': '128A', 'unit': 'None' },
|
262 |
|
|
|
263 |
|
|
'PSZ2_NAME': { 'format': '18A', 'unit': 'None' },
|
264 |
|
|
'PSZ2_GLON': { 'format': 'D', 'unit': 'degrees' },
|
265 |
|
|
'PSZ2_GLAT': { 'format': 'D', 'unit': 'degrees' },
|
266 |
|
|
'PSZ2_RA': { 'format': 'D', 'unit': 'degrees' },
|
267 |
|
|
'PSZ2_DEC': { 'format': 'D', 'unit': 'degrees' },
|
268 |
|
|
'PSZ2_POS_ERR': { 'format': 'E', 'unit': 'arcmin' },
|
269 |
|
|
'PSZ2_SNR': { 'format': 'E', 'unit': 'None' },
|
270 |
|
|
'PSZ2_PIPELINE': { 'format': 'I', 'unit': 'None' },
|
271 |
|
|
'PSZ2_PIPE_DET': { 'format': 'I', 'unit': 'None' },
|
272 |
|
|
'PSZ2_PCCS2': { 'format': 'L', 'unit': 'None' },
|
273 |
|
|
'PSZ2_PSZ': { 'format': 'I', 'unit': 'None' },
|
274 |
|
|
'PSZ2_IR_FLAG': { 'format': 'I', 'unit': 'None' },
|
275 |
|
|
'PSZ2_Q_NEURAL': { 'format': 'E', 'unit': 'None' },
|
276 |
|
|
'PSZ2_Y5R500': { 'format': 'E', 'unit': '10^-3 arcmin^2' },
|
277 |
|
|
'PSZ2_Y5R500_ERR': { 'format': 'E', 'unit': '10^-3 arcmin^2' },
|
278 |
|
|
|
279 |
|
|
'PSZ2_REDSHIFT_ID': { 'format': '25A', 'unit': 'None' },
|
280 |
|
|
'PSZ2_REDSHIFT': { 'format': 'E', 'unit': 'None' },
|
281 |
|
|
'PSZ2_REDSHIFT_TYPE': { 'format': '5A', 'unit': 'None' },
|
282 |
|
|
'PSZ2_MSZ': { 'format': 'E', 'unit': '10^14 Msol' },
|
283 |
|
|
'PSZ2_MSZ_ERR_UP': { 'format': 'E', 'unit': '10^14 Msol' },
|
284 |
|
|
'PSZ2_MSZ_ERR_LOW': { 'format': 'E', 'unit': '10^14 Msol' },
|
285 |
|
|
'PSZ2_MCXC': { 'format': '25A', 'unit': 'None' },
|
286 |
|
|
'PSZ2_REDMAPPER': { 'format': '25A', 'unit': 'None' },
|
287 |
|
|
'PSZ2_ACT': { 'format': '25A', 'unit': 'None' },
|
288 |
|
|
'PSZ2_SPT': { 'format': '25A', 'unit': 'None' },
|
289 |
|
|
'PSZ2_WISE_SIGNF': { 'format': 'E', 'unit': 'None' },
|
290 |
|
|
'PSZ2_WISE_FLAG': { 'format': 'I', 'unit': 'None' },
|
291 |
|
|
'PSZ2_AMI_EVIDENCE': { 'format': 'E', 'unit': 'None' },
|
292 |
|
|
'PSZ2_COSMO': { 'format': 'L', 'unit': 'None' },
|
293 |
|
|
|
294 |
|
|
|
295 |
|
|
|
296 |
|
|
'PLCK_INDEX': { 'format': 'I', 'unit': 'None' },
|
297 |
|
|
'INDEX_PLCK': { 'format': 'I', 'unit': 'None' },
|
298 |
|
|
|
299 |
|
|
|
300 |
|
|
|
301 |
|
|
|
302 |
|
|
|
303 |
|
|
|
304 |
|
|
|
305 |
|
|
|
306 |
|
|
|
307 |
|
|
|
308 |
|
|
|
309 |
|
|
|
310 |
|
|
|
311 |
|
|
|
312 |
|
|
|
313 |
|
|
|
314 |
|
|
|
315 |
|
|
|
316 |
|
|
|
317 |
|
|
|
318 |
|
|
|
319 |
|
|
|
320 |
|
|
|
321 |
|
|
|
322 |
|
|
|
323 |
|
|
|
324 |
|
|
|
325 |
|
|
|
326 |
|
|
|
327 |
|
|
|
328 |
|
|
|
329 |
|
|
|
330 |
|
|
|
331 |
|
|
|
332 |
|
|
'PLCK_NAME': { 'format': '18A', 'unit': 'None' },
|
333 |
|
|
'PLCK_GLON': { 'format': 'D', 'unit': 'degrees' },
|
334 |
|
|
'PLCK_GLAT': { 'format': 'D', 'unit': 'degrees' },
|
335 |
|
|
'PLCK_RA': { 'format': 'D', 'unit': 'degrees' },
|
336 |
|
|
'PLCK_DEC': { 'format': 'D', 'unit': 'degrees' },
|
337 |
|
|
'PLCK_RA_MCXC': { 'format': 'E', 'unit': 'degrees' },
|
338 |
|
|
'PLCK_DEC_MCXC': { 'format': 'E', 'unit': 'degrees' },
|
339 |
|
|
'PLCK_REDSHIFT': { 'format': 'E', 'unit': 'None' },
|
340 |
|
|
'PLCK_REDSHIFT_TYPE': { 'format': '5A', 'unit': 'None' },
|
341 |
|
|
'PLCK_REDSHIFT_SOURCE': { 'format': 'I', 'unit': 'None' },
|
342 |
|
|
'PLCK_REDSHIFT_REF': { 'format': '36A', 'unit': 'None' },
|
343 |
|
|
'PLCK_ALT_NAME': { 'format': '66A', 'unit': 'None' },
|
344 |
|
|
'PLCK_YZ_500': { 'format': 'E', 'unit': '10^-4 arcmin squared' },
|
345 |
|
|
'PLCK_ERRP_YZ_500': { 'format': 'E', 'unit': '10^-4 arcmin squared' },
|
346 |
|
|
'PLCK_ERRM_YZ_500': { 'format': 'E', 'unit': '10^-4 arcmin squared' },
|
347 |
|
|
'PLCK_M_YZ_500': { 'format': 'E', 'unit': '10^14 solar mass' },
|
348 |
|
|
'PLCK_ERRP_M_YZ_500': { 'format': 'E', 'unit': '10^14 solar mass' },
|
349 |
|
|
'PLCK_ERRM_M_YZ_500': { 'format': 'E', 'unit': '10^14 solar mass' },
|
350 |
|
|
'PLCK_S_X': { 'format': 'E', 'unit': 'erg/s/cm2' },
|
351 |
|
|
'PLCK_ERR_S_X': { 'format': 'E', 'unit': 'erg/s/cm2' },
|
352 |
|
|
'PLCK_Y_PSX_500': { 'format': 'E', 'unit': '10^-4 arcmin squared' },
|
353 |
|
|
'PLCK_SN_PSX': { 'format': 'E', 'unit': 'None' },
|
354 |
|
|
'PLCK_PIPELINE': { 'format': 'I', 'unit': 'None' },
|
355 |
|
|
'PLCK_PIPE_DET': { 'format': 'I', 'unit': 'None' },
|
356 |
|
|
'PLCK_PCCS': { 'format': 'L', 'unit': 'None' },
|
357 |
|
|
'PLCK_VALIDATION': { 'format': 'I', 'unit': 'None' },
|
358 |
|
|
'PLCK_ID_EXT': { 'format': '25A', 'unit': 'None' },
|
359 |
|
|
'PLCK_POS_ERR': { 'format': 'E', 'unit': 'arcmin' },
|
360 |
|
|
'PLCK_SNR': { 'format': 'E', 'unit': 'None' },
|
361 |
|
|
'PLCK_COSMO': { 'format': 'L', 'unit': 'None' },
|
362 |
|
|
'PLCK_COMMENT': { 'format': 'L', 'unit': 'None' },
|
363 |
|
|
'PLCK_QN': { 'format': 'E', 'unit': 'None' },
|
364 |
|
|
|
365 |
|
|
|
366 |
|
|
'SPT_INDEX': { 'format': 'I', 'unit': 'None' },
|
367 |
|
|
'INDEX_SPT': { 'format': 'I', 'unit': 'None' },
|
368 |
|
|
|
369 |
|
|
|
370 |
|
|
|
371 |
|
|
|
372 |
|
|
|
373 |
|
|
|
374 |
|
|
|
375 |
|
|
|
376 |
|
|
|
377 |
|
|
|
378 |
|
|
'REDSHIFT_LIMIT': { 'format': 'E', 'unit': 'None' },
|
379 |
|
|
|
380 |
|
|
'M500_fidCosmo': { 'format': 'E', 'unit': '10^14 h70^-1 solar mass' },
|
381 |
|
|
'ERR_M500_fidCosmo': { 'format': 'E', 'unit': '10^14 h70^-1 solar mass' },
|
382 |
|
|
'M500_PlanckCosmo': { 'format': 'E', 'unit': '10^14 h70^-1 solar mass' },
|
383 |
|
|
'ERR_M500_PlanckCosmo': { 'format': 'E', 'unit': '10^14 h70^-1 solar mass' },
|
384 |
|
|
'YSZ': { 'format': 'E', 'unit': '10^-6 arcmin squared' },
|
385 |
|
|
'ERR_YSZ': { 'format': 'E', 'unit': '10^-6 arcmin squared' },
|
386 |
|
|
|
387 |
|
|
'LX': { 'format': 'E', 'unit': '10^44 erg/s' },
|
388 |
|
|
'YSZ': { 'format': 'E', 'unit': '10^-6 arcmin squared' },
|
389 |
|
|
'ERR_YSZ': { 'format': 'E', 'unit': '10^-6 arcmin squared' },
|
390 |
|
|
|
391 |
|
|
'PAPER': { 'format': '59A', 'unit': 'None' },
|
392 |
|
|
'XRAY': { 'format': 'L', 'unit': 'None' },
|
393 |
|
|
'STRONG_LENS': { 'format': 'L', 'unit': 'None' },
|
394 |
|
|
|
395 |
|
|
'SPT_CATALOG': { 'format': '7A', 'unit': 'None' },
|
396 |
|
|
'SPT_NAME': { 'format': '16A', 'unit': 'None' },
|
397 |
|
|
'SPT_GLON': { 'format': 'E', 'unit': 'degrees' },
|
398 |
|
|
'SPT_GLAT': { 'format': 'E', 'unit': 'degrees' },
|
399 |
|
|
'SPT_RA': { 'format': 'E', 'unit': 'degrees' },
|
400 |
|
|
'SPT_DEC': { 'format': 'E', 'unit': 'degrees' },
|
401 |
|
|
'SPT_SNR': { 'format': 'E', 'unit': 'None' },
|
402 |
|
|
'SPT_REDSHIFT': { 'format': 'E', 'unit': 'None' },
|
403 |
|
|
'SPT_ERR_REDSHIFT': { 'format': 'E', 'unit': 'None' },
|
404 |
|
|
'SPT_REDSHIFT_TYPE': { 'format': '5A', 'unit': 'None' },
|
405 |
|
|
'SPT_REDSHIFT_REF': { 'format': '19A', 'unit': 'None' },
|
406 |
|
|
|
407 |
|
|
'SPT_REDSHIFT_LIMIT': { 'format': 'E', 'unit': 'None' },
|
408 |
|
|
'SPT_XRAY': { 'format': 'L', 'unit': 'None' },
|
409 |
|
|
'SPT_STRONG_LENS': { 'format': 'L', 'unit': 'None' },
|
410 |
|
|
|
411 |
|
|
'SPT_M500_fidCosmo': { 'format': 'E', 'unit': '10^14 h70^-1 solar mass' },
|
412 |
|
|
'SPT_ERR_M500_fidCosmo': { 'format': 'E', 'unit': '10^14 h70^-1 solar mass' },
|
413 |
|
|
'SPT_M500_PlanckCosmo': { 'format': 'E', 'unit': '10^14 h70^-1 solar mass' },
|
414 |
|
|
'SPT_ERR_M500_PlanckCosmo': { 'format': 'E', 'unit': '10^14 h70^-1 solar mass' },
|
415 |
|
|
|
416 |
|
|
'SPT_LX': { 'format': 'E', 'unit': '10^44 erg/s' },
|
417 |
|
|
'SPT_YSZ': { 'format': 'E', 'unit': '10^-6 arcmin squared' },
|
418 |
|
|
'SPT_ERR_YSZ': { 'format': 'E', 'unit': '10^-6 arcmin squared' },
|
419 |
|
|
'SPT_THETA': { 'format': 'E', 'unit': 'arcmin' },
|
420 |
|
|
'SPT_PAPER': { 'format': '59A', 'unit': 'None' }
|
421 |
|
|
|
422 |
|
|
}
|
423 |
|
|
|
424 |
|
|
|
425 |
|
|
|
426 |
|
|
|
427 |
|
|
name_mass_key = ['M500']
|
428 |
|
|
name_errMass_key = ['ERR_M500']
|
429 |
|
|
|
430 |
|
|
name_ra_key = 'RA'
|
431 |
|
|
name_dec_key = 'DEC'
|
432 |
|
|
name_coordinates_keys = ['RA_MCXC', 'DEC_MCXC', name_ra_key, name_dec_key]
|
433 |
|
|
|
434 |
|
|
name_Name_key = 'NAME'
|
435 |
|
|
name_index_key = 'INDEX'
|
436 |
|
|
name_catalog_key = 'CATALOG'
|
437 |
|
|
name_redshift_key = 'REDSHIFT'
|
438 |
|
|
name_zLimit_key = 'REDSHIFT_LIMIT'
|
439 |
|
|
name_zErr_key = 'ERR_REDSHIFT'
|
440 |
|
|
name_zType_key = 'REDSHIFT_TYPE'
|
441 |
|
|
name_zRef_key = 'REDSHIFT_REF'
|
442 |
|
|
name_altName_key = 'ALT_NAME'
|
443 |
|
|
name_paper_key = 'PAPER'
|
444 |
|
|
|
445 |
|
|
|
446 |
|
|
_UNDEF_VALUES_ = {
|
447 |
|
|
'FLOAT' : {np.nan},
|
448 |
|
|
'INT' : {-1},
|
449 |
|
|
'STRING' : {'NULL'},
|
450 |
|
|
name_zType_key : {'undef'},
|
451 |
|
|
'PIPELINE' : {0},
|
452 |
|
|
'PIPE_DET' : {0}
|
453 |
|
|
}
|
454 |
|
|
|
455 |
|
|
def remove_duplicated_names(string):
|
456 |
|
|
'''
|
457 |
|
|
This function removes duplicated names of a string, assuming they are separated by ';'
|
458 |
|
|
In addition, it takes out 'NULL', 'NaN', 'False' from the final, composite string.
|
459 |
|
|
It is used for the creation of ALT_NAME field.
|
460 |
|
|
'''
|
461 |
|
|
string = string.replace('; ',';')
|
462 |
|
|
tmp = [item for item in string.split(';') if item.upper() not in ["-", "NULL", "NAN", "NONE", "FALSE"] and len(item)>0 ]
|
463 |
|
|
|
464 |
|
|
tmp_uniq = []
|
465 |
|
|
set_tmp = set()
|
466 |
|
|
for item in tmp:
|
467 |
|
|
if item not in set_tmp:
|
468 |
|
|
tmp_uniq.append(item)
|
469 |
|
|
set_tmp.add(item)
|
470 |
|
|
|
471 |
|
|
|
472 |
|
|
if len(tmp)==0: new_string = '-'
|
473 |
|
|
else: new_string = "; ".join(tmp_uniq)
|
474 |
|
|
return new_string
|
475 |
|
|
|
476 |
|
|
def set_undef_values(fits_data):
|
477 |
|
|
'''
|
478 |
|
|
Set the proper 'undef' values according to the format/name of the field
|
479 |
|
|
'''
|
480 |
|
|
print "\n\t>> Checking/setting undefined values for the different fields ..."
|
481 |
|
|
for i, name in enumerate(fits_data.names):
|
482 |
|
|
sys.stdout.write('\t%i/%i > %s (format %s) : Done \r' % (i+1, len(fits_data.names), name, fits_data.formats[i]))
|
483 |
|
|
sys.stdout.flush()
|
484 |
|
|
for j in range(fits_data.size):
|
485 |
|
|
if name == name_index_key:
|
486 |
|
|
if fits_data[name_Name_key][j] <= 0: fits_data[j][i] = -1
|
487 |
|
|
elif name == name_redshift_key and fits_data[name][j] == -1.0:
|
488 |
|
|
fits_data[j][i] = np.nan
|
489 |
|
|
elif name.find(name_zType_key) >= 0 and str(fits_data[name][j]) == 'Null':
|
490 |
|
|
fits_data[j][i] = "undef"
|
491 |
|
|
elif fits_data.formats[i] in 'EDJ':
|
492 |
|
|
if str(fits_data[j][i]) in ['-1.6375e+30','-1.63750e+30', '-1.6375E+30', '-1.63750E+30', 'None', 'NULL']:
|
493 |
|
|
fits_data[j][i] = np.nan
|
494 |
|
|
elif fits_data.formats[i].find('A') >= 0:
|
495 |
|
|
fits_data[j][i] = remove_duplicated_names(fits_data[j][i])
|
496 |
|
|
if str(fits_data[j][i]).upper() in ["", "0.0", "NULL", "NAN", "NONE", "FALSE"] or str(fits_data[j][i]) == 'False':
|
497 |
|
|
fits_data[j][i] = "-"
|
498 |
|
|
elif name in ['PIPELINE','PIPE_DET']:
|
499 |
|
|
if fits_data[j][i] <= 0: fits_data[j][i] = 0
|
500 |
|
|
print '\n'
|
501 |
|
|
return fits_data
|
502 |
|
|
|
503 |
|
|
def recreate_reformatted_column(hdulist, field_name, new_format, new_vector):
|
504 |
|
|
'''
|
505 |
|
|
Update the length (format) of a 'STRING' (format = 'xA') FIELD.
|
506 |
|
|
The only way, though, is to re-create the column with the new format.
|
507 |
|
|
It is used during the creation of NAME, ALT_NAME or REDSHIFT_REF.
|
508 |
|
|
'''
|
509 |
|
|
name_vec = []
|
510 |
|
|
format_vec = []
|
511 |
|
|
unit_vec = []
|
512 |
|
|
|
513 |
|
|
fits_keywds = hdulist.data.names
|
514 |
|
|
coldefs = pyfits.ColDefs(hdulist.columns)
|
515 |
|
|
|
516 |
|
|
|
517 |
|
|
for j in range(fits_keywds.index(field_name)+1, len(fits_keywds)):
|
518 |
|
|
name_vec.append(coldefs.names[j])
|
519 |
|
|
format_vec.append(coldefs.formats[j])
|
520 |
|
|
unit_vec.append(coldefs.units[j])
|
521 |
|
|
|
522 |
|
|
|
523 |
|
|
tmp = 0
|
524 |
|
|
for j in range(fits_keywds.index(field_name)+1, len(fits_keywds)):
|
525 |
|
|
coldefs.del_col(name_vec[tmp])
|
526 |
|
|
tmp+=1
|
527 |
|
|
|
528 |
|
|
|
529 |
|
|
coldefs.del_col(field_name)
|
530 |
|
|
|
531 |
|
|
|
532 |
|
|
col_tmp = pyfits.Column(name = field_name, format = new_format, unit = 'None', array = new_vector)
|
533 |
|
|
coldefs.add_col(col_tmp)
|
534 |
|
|
hdulist.columns = coldefs
|
535 |
|
|
|
536 |
|
|
|
537 |
|
|
tmp = 0
|
538 |
|
|
data_vec_tmp = []
|
539 |
|
|
for j in range(fits_keywds.index(field_name)+1, len(fits_keywds)):
|
540 |
|
|
data_vec_tmp = hdulist.data[name_vec[tmp]]
|
541 |
|
|
col_tmp = pyfits.Column(name = name_vec[tmp], format = format_vec[tmp], unit = unit_vec[tmp], array = data_vec_tmp)
|
542 |
|
|
coldefs.add_col(col_tmp)
|
543 |
|
|
tmp +=1
|
544 |
|
|
data_vec_tmp = []
|
545 |
|
|
|
546 |
|
|
hdulist = pyfits.new_table(coldefs)
|
547 |
|
|
return hdulist
|
548 |
|
|
|
549 |
|
|
'''
|
550 |
|
|
*** >> START << ***
|
551 |
|
|
'''
|
552 |
|
|
|
553 |
|
|
if (len(sys.argv) > 1):
|
554 |
|
|
fits_file = sys.argv[1]
|
555 |
|
|
ascii_file = sys.argv[2]
|
556 |
|
|
else:
|
557 |
|
|
print bcolors.WARNING + "\n\tSintax:\t$ python edit_FITS.py <fits_file> <ascii_file>\n" + bcolors.ENDC
|
558 |
|
|
os._exit(0)
|
559 |
|
|
|
560 |
|
|
|
561 |
|
|
file_report_name = 'summary_updates.tab'
|
562 |
|
|
file_report = open(file_report_name, 'w')
|
563 |
|
|
|
564 |
|
|
question = bcolors.OKBLUE+ "[Q]" + bcolors.ENDC
|
565 |
|
|
info = bcolors.WARNING+ "[I]" + bcolors.ENDC
|
566 |
|
|
error = bcolors.FAIL+ "[ERR]" + bcolors.ENDC
|
567 |
|
|
|
568 |
|
|
|
569 |
|
|
delim=raw_input("\n%s Please enter the column delimiter of the ASCII table (default is ','):\t" % question)
|
570 |
|
|
if not delim:
|
571 |
|
|
|
572 |
|
|
ascii_table=asciidata.open(ascii_file, 'r', delimiter=',')
|
573 |
|
|
else:
|
574 |
|
|
ascii_table=asciidata.open(ascii_file, 'r', delimiter=delim)
|
575 |
|
|
|
576 |
|
|
Ncol_ascii = ascii_table.ncols
|
577 |
|
|
Nrows_ascii = (ascii_table.nrows) - 1
|
578 |
|
|
|
579 |
|
|
print "\n\t\t **** ASCII table details ****"
|
580 |
|
|
print "\t\t Number of columns: %s" % (Ncol_ascii)
|
581 |
|
|
print "\t\t Number of rows: %s" % (Nrows_ascii)
|
582 |
|
|
print "\t\t **** **** **** **** **** ****"
|
583 |
|
|
|
584 |
|
|
ascii_keywds=[]
|
585 |
|
|
keys_form_unit = {}
|
586 |
|
|
|
587 |
|
|
for i in range(ascii_table.ncols):
|
588 |
|
|
tmpKey = str(ascii_table[i][0]).strip()
|
589 |
|
|
ascii_keywds.append(tmpKey)
|
590 |
|
|
if tmpKey in _FIELDS_DICTIONARY:
|
591 |
|
|
keys_form_unit[tmpKey] = {}
|
592 |
|
|
keys_form_unit[tmpKey]['TFORM'] = _FIELDS_DICTIONARY[tmpKey]['format']
|
593 |
|
|
keys_form_unit[tmpKey]['TUNIT'] = _FIELDS_DICTIONARY[tmpKey]['unit']
|
594 |
|
|
|
595 |
|
|
|
596 |
|
|
hdulist = pyfits.open(fits_file)
|
597 |
|
|
fits_header = hdulist[1].header
|
598 |
|
|
fits_data = hdulist[1].data
|
599 |
|
|
|
600 |
|
|
|
601 |
|
|
Ncol_fits = int(fits_header['TFIELDS'])
|
602 |
|
|
|
603 |
|
|
|
604 |
|
|
Nrows_fits = fits_header['NAXIS2']
|
605 |
|
|
|
606 |
|
|
print "\n\t\t **** FITS table details ****"
|
607 |
|
|
print "\t\t Number of columns: %s" % (Ncol_fits)
|
608 |
|
|
print "\t\t Number of rows: %s" % (Nrows_fits)
|
609 |
|
|
print "\t\t **** *** *** *** *** *** ***"
|
610 |
|
|
|
611 |
|
|
|
612 |
|
|
fits_keywds=[]
|
613 |
|
|
original_fits_keywds = []
|
614 |
|
|
|
615 |
|
|
for i in range(Ncol_fits):
|
616 |
|
|
original_fits_keywds.append(fits_data.names[i])
|
617 |
|
|
fits_keywds.append(fits_data.names[i])
|
618 |
|
|
|
619 |
|
|
|
620 |
|
|
common_keywds=[]
|
621 |
|
|
commonKeywds_index=[]
|
622 |
|
|
keywds_to_update=[]
|
623 |
|
|
for j in range(Ncol_fits):
|
624 |
|
|
if fits_keywds[j] in ascii_keywds:
|
625 |
|
|
common_keywds.append(fits_keywds[j])
|
626 |
|
|
commonKeywds_index.append(j+1)
|
627 |
|
|
|
628 |
|
|
|
629 |
|
|
keywds_to_update.append(fits_keywds[j])
|
630 |
|
|
|
631 |
|
|
print "\n\t%s The following keyword(s) will be updated in the FITS table: " % info , keywds_to_update
|
632 |
|
|
|
633 |
|
|
|
634 |
|
|
keywds_to_add=[item for item in ascii_keywds if item not in fits_keywds]
|
635 |
|
|
|
636 |
|
|
print "\n\t%s The following new keyword(s) will be added to the FITS table: " % info , keywds_to_add
|
637 |
|
|
|
638 |
|
|
|
639 |
|
|
|
640 |
|
|
for i in range(len(keywds_to_add)):
|
641 |
|
|
if keywds_to_add[i] not in _FIELDS_DICTIONARY:
|
642 |
|
|
keys_form_unit[keywds_to_add[i]] = {}
|
643 |
|
|
message = "\n%s Please enter the format (\'TFORM\') of the new field \"%s\" (e.g.: 5A, E, L, ...): " % (question, keywds_to_add[i])
|
644 |
|
|
keys_form_unit[keywds_to_add[i]]['TFORM'] = raw_input(message)
|
645 |
|
|
message = "\n%s Please enter the unit (\'TUNIT\') of the new field \"%s\" (e.g.: None, arcmin, ...): " % (question, keywds_to_add[i])
|
646 |
|
|
keys_form_unit[keywds_to_add[i]]['TUNIT'] = raw_input(message)
|
647 |
|
|
else:
|
648 |
|
|
keys_form_unit[keywds_to_add[i]] = {}
|
649 |
|
|
keys_form_unit[keywds_to_add[i]]['TFORM'] = _FIELDS_DICTIONARY[keywds_to_add[i]]['format']
|
650 |
|
|
keys_form_unit[keywds_to_add[i]]['TUNIT'] = _FIELDS_DICTIONARY[keywds_to_add[i]]['unit']
|
651 |
|
|
|
652 |
|
|
|
653 |
|
|
fits_keywds.append(keywds_to_add[i])
|
654 |
|
|
|
655 |
|
|
'''
|
656 |
|
|
*** Add the NEW COLUMNS to FITS table ***
|
657 |
|
|
'''
|
658 |
|
|
|
659 |
|
|
|
660 |
|
|
a_tmp = []
|
661 |
|
|
|
662 |
|
|
coldefs = pyfits.ColDefs(hdulist[1].columns)
|
663 |
|
|
columns = []
|
664 |
|
|
|
665 |
|
|
for keys in keywds_to_add:
|
666 |
|
|
if keys_form_unit[keys]['TFORM'] == 'E' or keys_form_unit[keys]['TFORM'] == 'D':
|
667 |
|
|
a_tmp = [-1.6375E+30] * Nrows_fits
|
668 |
|
|
elif keys_form_unit[keys]['TFORM'] == 'I':
|
669 |
|
|
a_tmp = [-1] * Nrows_fits
|
670 |
|
|
elif keys_form_unit[keys]['TFORM'] == 'L':
|
671 |
|
|
a_tmp = [False] * Nrows_fits
|
672 |
|
|
elif keys_form_unit[keys]['TFORM'].find('A') >= 0:
|
673 |
|
|
a_tmp = ['Null'] * Nrows_fits
|
674 |
|
|
|
675 |
|
|
while True:
|
676 |
|
|
|
677 |
|
|
try:
|
678 |
|
|
col_tmp = pyfits.Column(name=keys, format=keys_form_unit[keys]['TFORM'], unit=keys_form_unit[keys]['TUNIT'], array=a_tmp)
|
679 |
|
|
columns.append(col_tmp)
|
680 |
|
|
break
|
681 |
|
|
except ValueError:
|
682 |
|
|
print bcolors.FAIL+ "\n\t\t*** FORMAT INCONSISTENT WITH DATA ***" + bcolors.ENDC
|
683 |
|
|
keys_form_unit[keys]['TFORM'] = raw_input("\n%s Please, enter again the format (\'TFORM\') of the new field \"%s\": " % (question, keys))
|
684 |
|
|
|
685 |
|
|
'''
|
686 |
|
|
*** 1st data UPDATE: new fields added as new columns ***
|
687 |
|
|
'''
|
688 |
|
|
|
689 |
|
|
|
690 |
|
|
for i in columns: coldefs.add_col(i)
|
691 |
|
|
hdulist = pyfits.new_table(coldefs)
|
692 |
|
|
|
693 |
|
|
|
694 |
|
|
|
695 |
|
|
|
696 |
|
|
fits_data = hdulist.data
|
697 |
|
|
|
698 |
|
|
'''
|
699 |
|
|
*** Object identification via POSITION matching, NAME or INDEX ***
|
700 |
|
|
'''
|
701 |
|
|
match_option = False
|
702 |
|
|
match_radius = 300.0
|
703 |
|
|
|
704 |
|
|
name_index_fits = ''
|
705 |
|
|
name_index_ascii = ''
|
706 |
|
|
|
707 |
|
|
print '\n%s Which method do you want to use for the object matching: by POSITION (1) by NAME (2) or by INDEX (3)?' % question
|
708 |
|
|
while match_option == False:
|
709 |
|
|
message = "\n\t-> Please enter 1, 2 or 3: "
|
710 |
|
|
method = raw_input(message)
|
711 |
|
|
if method == '1':
|
712 |
|
|
|
713 |
|
|
if name_ra_key not in fits_data.names or name_dec_key not in fits_data.names or name_ra_key not in ascii_keywds or name_dec_key not in ascii_keywds:
|
714 |
|
|
print bcolors.FAIL+ "\n\t>> NO %s and %s found in FITS and ASCII tables: POSITION matching not possible <<" % (name_ra_key, name_dec_key) + bcolors.ENDC
|
715 |
|
|
else:
|
716 |
|
|
match_option = method
|
717 |
|
|
match_radius = float(raw_input('\n\t%s Please enter the match radius (in arcsec): ' % question))
|
718 |
|
|
elif method == '2' : match_option = method
|
719 |
|
|
elif method == '3' :
|
720 |
|
|
check_name_index_fits = False
|
721 |
|
|
while check_name_index_fits == False:
|
722 |
|
|
name_index_fits = raw_input('\n\t-> Please enter the column name of the INDEX in the FITS file: ')
|
723 |
|
|
if name_index_fits not in fits_keywds:
|
724 |
|
|
print bcolors.FAIL+ "\n\t*** '%s' NOT in FITS Keywords ***" % name_index_fits+ bcolors.ENDC
|
725 |
|
|
else:
|
726 |
|
|
check_name_index_fits = True
|
727 |
|
|
index_fits = np.array( fits_data[name_index_fits] )
|
728 |
|
|
|
729 |
|
|
check_name_index_ascii = False
|
730 |
|
|
while check_name_index_ascii == False:
|
731 |
|
|
name_index_ascii = raw_input('\n\t-> Please enter the column name of the INDEX in the ASCII file: ')
|
732 |
|
|
if name_index_ascii not in ascii_keywds:
|
733 |
|
|
print bcolors.FAIL+ "\n\t*** '%s' NOT in ASCII Keywords ***" % name_index_ascii+ bcolors.ENDC
|
734 |
|
|
else:
|
735 |
|
|
check_name_index_ascii = True
|
736 |
|
|
index_ascii = [ (ascii_table[k][j]) for k in range(ascii_table.ncols) if ascii_table[k][0] == name_index_ascii for j in range(1,ascii_table.nrows) ]
|
737 |
|
|
|
738 |
|
|
match_option = method
|
739 |
|
|
|
740 |
|
|
else: print bcolors.FAIL+ "\n\t*** Wrong option ***"+ bcolors.ENDC
|
741 |
|
|
|
742 |
|
|
name_fits = np.array(fits_data[name_Name_key])
|
743 |
|
|
ra_fits = np.array(fits_data[ name_ra_key ])
|
744 |
|
|
dec_fits = np.array(fits_data[ name_dec_key ])
|
745 |
|
|
|
746 |
|
|
name_ascii = []
|
747 |
|
|
ra_ascii = []
|
748 |
|
|
dec_ascii = []
|
749 |
|
|
|
750 |
|
|
for k in range(ascii_table.ncols):
|
751 |
|
|
if ascii_keywds[k]==name_Name_key:
|
752 |
|
|
for j in range(ascii_table.nrows -1): name_ascii.append((ascii_table[k][j+1]).strip())
|
753 |
|
|
if ascii_keywds[k]==name_ra_key:
|
754 |
|
|
for j in range(ascii_table.nrows -1): ra_ascii.append(float(ascii_table[k][j+1]))
|
755 |
|
|
elif ascii_keywds[k]==name_dec_key:
|
756 |
|
|
for j in range(ascii_table.nrows -1): dec_ascii.append(float(ascii_table[k][j+1]))
|
757 |
|
|
|
758 |
|
|
dist_asec = []
|
759 |
|
|
|
760 |
|
|
|
761 |
|
|
rowAscii_match = []
|
762 |
|
|
rowFits_match = []
|
763 |
|
|
|
764 |
|
|
|
765 |
|
|
rowAscii_new = []
|
766 |
|
|
|
767 |
|
|
method_dict = {
|
768 |
|
|
'1' : 'POSITION (dist < %.1f")' % match_radius,
|
769 |
|
|
'2' : 'NAME',
|
770 |
|
|
'3' : 'INDEX'
|
771 |
|
|
}
|
772 |
|
|
|
773 |
|
|
print "\n\t>> Matching ASCII/FITS tables by %s ...\n" % method_dict[method]
|
774 |
|
|
|
775 |
|
|
num_tot_matches = 0
|
776 |
|
|
for j in range(Nrows_fits):
|
777 |
|
|
num_multiple_matches = 0
|
778 |
|
|
id_matches = []
|
779 |
|
|
ra_dec_matches = []
|
780 |
|
|
|
781 |
|
|
if match_option == '1':
|
782 |
|
|
tmp_idxs_matches = []
|
783 |
|
|
tmp_dist_matches = []
|
784 |
|
|
|
785 |
|
|
for i in range(Nrows_ascii):
|
786 |
|
|
dist_tmp = 3600. * astCoords.calcAngSepDeg(float(ra_fits[j]), float(dec_fits[j]), ra_ascii[i], dec_ascii[i])
|
787 |
|
|
if dist_tmp <= match_radius:
|
788 |
|
|
tmp_idxs_matches.append(i)
|
789 |
|
|
tmp_dist_matches.append(round(dist_tmp,1))
|
790 |
|
|
num_tot_matches += 1
|
791 |
|
|
num_multiple_matches += 1
|
792 |
|
|
|
793 |
|
|
idx_match = 0
|
794 |
|
|
if len( tmp_idxs_matches ) > 1:
|
795 |
|
|
print bcolors.WARNING+ "\n\t! WARNING ! %i objects found within %.1f arcsec from %s \n" % ( len(tmp_idxs_matches), match_radius, name_fits[j]) + bcolors.ENDC
|
796 |
|
|
for idx in range( len(tmp_idxs_matches) ): print '\t%i: %s (dist = %s")' % ( (idx+1, name_ascii[ tmp_idxs_matches[idx]], tmp_dist_matches[idx] ) )
|
797 |
|
|
tmp_check = False
|
798 |
|
|
while tmp_check == False:
|
799 |
|
|
tmp_entry = int(raw_input('\t-> Please enter the number of the matching object: '))
|
800 |
|
|
if tmp_entry in range(1, len(tmp_idxs_matches)+1 ):
|
801 |
|
|
tmp_check = True
|
802 |
|
|
idx_match = tmp_idxs_matches[ tmp_entry - 1 ]
|
803 |
|
|
else:
|
804 |
|
|
print bcolors.FAIL+ "\n\t*** Wrong option ***\n"+ bcolors.ENDC
|
805 |
|
|
|
806 |
|
|
id_matches.append((name_ascii[idx_match]).strip())
|
807 |
|
|
ra_dec_matches.append(ra_ascii[idx_match])
|
808 |
|
|
ra_dec_matches.append(dec_ascii[idx_match])
|
809 |
|
|
|
810 |
|
|
|
811 |
|
|
rowAscii_match.append(idx_match)
|
812 |
|
|
rowFits_match.append(j)
|
813 |
|
|
|
814 |
|
|
elif len( tmp_idxs_matches ) == 1:
|
815 |
|
|
idx_match = tmp_idxs_matches[0]
|
816 |
|
|
|
817 |
|
|
id_matches.append((name_ascii[idx_match]).strip())
|
818 |
|
|
ra_dec_matches.append(ra_ascii[idx_match])
|
819 |
|
|
ra_dec_matches.append(dec_ascii[idx_match])
|
820 |
|
|
|
821 |
|
|
|
822 |
|
|
rowAscii_match.append(idx_match)
|
823 |
|
|
rowFits_match.append(j)
|
824 |
|
|
|
825 |
|
|
elif match_option == '2':
|
826 |
|
|
for i in range(Nrows_ascii):
|
827 |
|
|
if (name_fits[j]).strip() == (name_ascii[i]).strip():
|
828 |
|
|
num_multiple_matches += 1
|
829 |
|
|
num_tot_matches += 1
|
830 |
|
|
if num_multiple_matches > 1:
|
831 |
|
|
|
832 |
|
|
print '%s Found %i objects with the same name : %s\nAborted.\n' % (error, num_multiple_matches, name_fits[j]); os._exit(0)
|
833 |
|
|
|
834 |
|
|
|
835 |
|
|
rowAscii_match.append(i)
|
836 |
|
|
rowFits_match.append(j)
|
837 |
|
|
|
838 |
|
|
elif match_option == '3':
|
839 |
|
|
for i in range(Nrows_ascii):
|
840 |
|
|
if int(index_fits[j]) == int(index_ascii[i]) and (int(index_fits[j]) >= 0 and int(index_ascii[i]) >= 0):
|
841 |
|
|
num_tot_matches += 1
|
842 |
|
|
|
843 |
|
|
|
844 |
|
|
rowAscii_match.append(i)
|
845 |
|
|
rowFits_match.append(j)
|
846 |
|
|
break
|
847 |
|
|
|
848 |
|
|
for i in range(Nrows_ascii):
|
849 |
|
|
if i not in rowAscii_match: rowAscii_new.append(i)
|
850 |
|
|
|
851 |
|
|
print "\n\t%s Found %s matching clusters between FITS/ASCII table to be UPDATED in the FITS table" % (info, len(rowAscii_match))
|
852 |
|
|
|
853 |
|
|
print "\n\t%s Found %s NEW clusters in the ASCII table to be ADDED to the FITS table" % (info, len(rowAscii_new))
|
854 |
|
|
|
855 |
|
|
|
856 |
|
|
idx_name = fits_keywds.index(name_Name_key)
|
857 |
|
|
clName_fits=[]
|
858 |
|
|
|
859 |
|
|
for k in range(Nrows_fits):
|
860 |
|
|
clName_fits.append(fits_data[k][idx_name])
|
861 |
|
|
|
862 |
|
|
common_clNames=[]
|
863 |
|
|
new_clNames=[]
|
864 |
|
|
|
865 |
|
|
for i, idx in enumerate(rowAscii_match):
|
866 |
|
|
common_clNames.append(clName_fits[rowFits_match[i]])
|
867 |
|
|
|
868 |
|
|
for idx in rowAscii_new:
|
869 |
|
|
idx_name = ascii_keywds.index(name_Name_key)
|
870 |
|
|
new_clNames.append( ascii_table[idx_name][idx+1] )
|
871 |
|
|
|
872 |
|
|
|
873 |
|
|
h_factor = 1.0
|
874 |
|
|
tmp_check = False
|
875 |
|
|
|
876 |
|
|
mass_in_ascii = set(name_mass_key) & set(ascii_keywds)
|
877 |
|
|
if mass_in_ascii:
|
878 |
|
|
print "\n%s Concerning %s, do you want to:\n\t1) Convert from h70^-1 -> h100^-1\n\t2) Convert from h100^-1 -> h70^-1\n\t3) Keep the original values of the ASCII table" % (question, mass_in_ascii.pop())
|
879 |
|
|
while tmp_check == False:
|
880 |
|
|
message = "\n\t-> Please enter 1, 2 or 3: "
|
881 |
|
|
h_opt = raw_input(message)
|
882 |
|
|
if h_opt == '1': h_factor = 0.7; tmp_check = True
|
883 |
|
|
elif h_opt == '2': h_factor = 1./0.7; tmp_check = True
|
884 |
|
|
elif h_opt == '3': h_factor = 1.; tmp_check = True
|
885 |
|
|
else: print bcolors.FAIL+ "\n\t*** Wrong option ***"+ bcolors.ENDC
|
886 |
|
|
|
887 |
|
|
newRow_num = Nrows_fits + len(rowAscii_new)
|
888 |
|
|
|
889 |
|
|
'''
|
890 |
|
|
*** 2nd data UPDATE: add the new clusters as new (initially empty) rows ***
|
891 |
|
|
'''
|
892 |
|
|
hdulist = pyfits.new_table(hdulist, nrows=newRow_num)
|
893 |
|
|
|
894 |
|
|
|
895 |
|
|
if name_catalog_key in fits_keywds and name_catalog_key not in ascii_keywds and len(rowAscii_new) > 0:
|
896 |
|
|
new_catalog = raw_input("\n%s Please enter the value of %s for the new cluster(s): " % (question, name_catalog_key))
|
897 |
|
|
|
898 |
|
|
|
899 |
|
|
'''
|
900 |
|
|
*** Update the PAPER column ***
|
901 |
|
|
'''
|
902 |
|
|
paper_flag = False
|
903 |
|
|
updated_paper_vec = []
|
904 |
|
|
max_length_paper = 0
|
905 |
|
|
cnt = 0
|
906 |
|
|
|
907 |
|
|
|
908 |
|
|
if name_paper_key in ascii_keywds and name_paper_key not in fits_keywds and len(rowAscii_new) == 0:
|
909 |
|
|
for j in range(Nrows_fits):
|
910 |
|
|
|
911 |
|
|
|
912 |
|
|
if j in rowFits_match:
|
913 |
|
|
paper_tmp = ascii_table[ascii_keywds.index(name_paper_key)][rowAscii_match[cnt]+1]
|
914 |
|
|
cnt += 1
|
915 |
|
|
else:
|
916 |
|
|
paper_tmp = "Null"
|
917 |
|
|
|
918 |
|
|
paper_tmp = remove_duplicated_names(paper_tmp)
|
919 |
|
|
updated_paper_vec.append(paper_tmp)
|
920 |
|
|
if len(paper_tmp) > max_length_paper: max_length_paper = len(paper_tmp)
|
921 |
|
|
|
922 |
|
|
|
923 |
|
|
|
924 |
|
|
elif name_paper_key in fits_keywds:
|
925 |
|
|
new_paper_vec = []
|
926 |
|
|
col_paper_fits = fits_keywds.index(name_paper_key)
|
927 |
|
|
|
928 |
|
|
if name_paper_key in ascii_keywds:
|
929 |
|
|
paper_flag = True
|
930 |
|
|
for i in range(Nrows_ascii):
|
931 |
|
|
new_paper_vec.append( ascii_table[ascii_keywds.index(name_paper_key)][i+1].strip() )
|
932 |
|
|
else:
|
933 |
|
|
|
934 |
|
|
if len(new_clNames)>0:
|
935 |
|
|
tmp_new_paper = raw_input("\n%s Please insert the new reference to add: " % question)
|
936 |
|
|
new_paper_vec=[tmp_new_paper for x in range( Nrows_ascii ) ]
|
937 |
|
|
paper_flag = True
|
938 |
|
|
else:
|
939 |
|
|
new_paper_vec=['' for x in range( Nrows_ascii ) ]
|
940 |
|
|
|
941 |
|
|
|
942 |
|
|
for j in range(Nrows_fits):
|
943 |
|
|
paper_old = (fits_data[j][col_paper_fits]).strip()
|
944 |
|
|
if j in rowFits_match:
|
945 |
|
|
if paper_old == "Null":
|
946 |
|
|
paper_tmp = new_paper_vec[ rowAscii_match[cnt] ]
|
947 |
|
|
cnt+=1
|
948 |
|
|
else:
|
949 |
|
|
paper_tmp = paper_old+"; "+new_paper_vec[ rowAscii_match[cnt] ]
|
950 |
|
|
cnt += 1
|
951 |
|
|
else:
|
952 |
|
|
paper_tmp = paper_old
|
953 |
|
|
|
954 |
|
|
paper_tmp = remove_duplicated_names(paper_tmp)
|
955 |
|
|
updated_paper_vec.append(paper_tmp)
|
956 |
|
|
if len(paper_tmp) > max_length_paper: max_length_paper = len(paper_tmp)
|
957 |
|
|
|
958 |
|
|
|
959 |
|
|
if name_paper_key in fits_keywds and paper_flag:
|
960 |
|
|
hdulist.columns.del_col(name_paper_key)
|
961 |
|
|
|
962 |
|
|
|
963 |
|
|
col_tmp = pyfits.Column(name=name_paper_key, format=str(max_length_paper)+'A', unit = 'None', array=updated_paper_vec)
|
964 |
|
|
paper_flag = True
|
965 |
|
|
|
966 |
|
|
if paper_flag:
|
967 |
|
|
coldefs = pyfits.ColDefs(hdulist.columns)
|
968 |
|
|
coldefs.add_col(col_tmp)
|
969 |
|
|
hdulist = pyfits.new_table(coldefs)
|
970 |
|
|
|
971 |
|
|
|
972 |
|
|
|
973 |
|
|
len_ALT_NAME = []
|
974 |
|
|
new_altName_vec = []
|
975 |
|
|
old_altName_vec = []
|
976 |
|
|
new_altName = ""
|
977 |
|
|
cnt = 0
|
978 |
|
|
|
979 |
|
|
altName_flag = False
|
980 |
|
|
name_in_altName = False
|
981 |
|
|
replace_altName = False
|
982 |
|
|
|
983 |
|
|
|
984 |
|
|
if len(common_clNames) > 0:
|
985 |
|
|
|
986 |
|
|
if name_altName_key not in ascii_keywds and name_altName_key in fits_keywds:
|
987 |
|
|
if name_Name_key in fits_keywds and name_Name_key in ascii_keywds:
|
988 |
|
|
answer_check = False
|
989 |
|
|
tmp = raw_input("\n\t%s Do you want to add the old clusters' %s listed in FITS table to %s? [y/n]: " % (question, name_Name_key, name_altName_key) )
|
990 |
|
|
while answer_check == False:
|
991 |
|
|
if tmp in 'yesYES1' and tmp != '':
|
992 |
|
|
name_in_altName = True
|
993 |
|
|
answer_check = True
|
994 |
|
|
elif tmp in 'nN' and tmp != '': answer_check = True
|
995 |
|
|
else: tmp = raw_input(bcolors.FAIL+ "\n\t\t*** Please enter a valid answer ***" + bcolors.ENDC + ' [y/n] : ')
|
996 |
|
|
|
997 |
|
|
col_altName_fits = fits_keywds.index( name_altName_key )
|
998 |
|
|
|
999 |
|
|
for j in range(Nrows_fits):
|
1000 |
|
|
|
1001 |
|
|
oldVal_fits = (fits_data[j][col_altName_fits]).strip()
|
1002 |
|
|
old_altName_vec.append(oldVal_fits)
|
1003 |
|
|
if j in rowFits_match:
|
1004 |
|
|
|
1005 |
|
|
|
1006 |
|
|
if name_in_altName:
|
1007 |
|
|
altName_flag = True
|
1008 |
|
|
|
1009 |
|
|
name_fits = np.array(fits_data[name_Name_key])
|
1010 |
|
|
new_altName = oldVal_fits+"; "+name_fits[j]
|
1011 |
|
|
|
1012 |
|
|
else: new_altName = oldVal_fits
|
1013 |
|
|
|
1014 |
|
|
new_altName = remove_duplicated_names(new_altName)
|
1015 |
|
|
new_altName_vec.append(new_altName)
|
1016 |
|
|
len_ALT_NAME.append(len(new_altName))
|
1017 |
|
|
|
1018 |
|
|
cnt += 1
|
1019 |
|
|
|
1020 |
|
|
else:
|
1021 |
|
|
new_altName = remove_duplicated_names(oldVal_fits)
|
1022 |
|
|
new_altName_vec.append(oldVal_fits)
|
1023 |
|
|
|
1024 |
|
|
elif name_altName_key in ascii_keywds and name_altName_key in fits_keywds:
|
1025 |
|
|
|
1026 |
|
|
answer_check = False
|
1027 |
|
|
tmp = raw_input("\n\t%s %s is both in ASCII/FITS tables. Do you want the ASCII values to REPLACE or to be APPENDED to the FITS ones? [r/a]: " % (question, name_altName_key) )
|
1028 |
|
|
while answer_check == False:
|
1029 |
|
|
if tmp in 'rR' and tmp != '':
|
1030 |
|
|
replace_altName = True
|
1031 |
|
|
answer_check = True
|
1032 |
|
|
elif tmp in 'aA' and tmp != '': answer_check = True
|
1033 |
|
|
else: tmp = raw_input(bcolors.FAIL+ "\n\t\t*** Please enter a valid answer ***" + bcolors.ENDC + ' [r/a] : ')
|
1034 |
|
|
|
1035 |
|
|
if name_Name_key in fits_keywds and name_Name_key in ascii_keywds:
|
1036 |
|
|
answer_check = False
|
1037 |
|
|
tmp = raw_input("\n\t%s Do you want to add the old clusters' %s listed in FITS table to %s? [y/n]: " % (question, name_Name_key, name_altName_key) )
|
1038 |
|
|
while answer_check == False:
|
1039 |
|
|
if tmp in 'yesYES1' and tmp != '':
|
1040 |
|
|
name_in_altName = True
|
1041 |
|
|
answer_check = True
|
1042 |
|
|
elif tmp in 'nN' and tmp != '': answer_check = True
|
1043 |
|
|
else: tmp = raw_input(bcolors.FAIL+ "\n\t\t*** Please enter a valid answer ***" + bcolors.ENDC + ' [y/n] : ')
|
1044 |
|
|
|
1045 |
|
|
col_altName_ascii = ascii_keywds.index( name_altName_key )
|
1046 |
|
|
|
1047 |
|
|
if replace_altName:
|
1048 |
|
|
altName_flag = True
|
1049 |
|
|
print "\n\t%s %s replaced" % (info, name_altName_key)
|
1050 |
|
|
|
1051 |
|
|
if name_in_altName:
|
1052 |
|
|
names_fits = fits_data[name_Name_key].strip()
|
1053 |
|
|
for j in range(Nrows_fits):
|
1054 |
|
|
oldVal_fits = (fits_data[ name_altName_key ][j]).strip()
|
1055 |
|
|
old_altName_vec.append(oldVal_fits)
|
1056 |
|
|
if j in rowFits_match:
|
1057 |
|
|
new_altName = ascii_table[col_altName_ascii][rowAscii_match[cnt]+1]+"; "+name_fits[j]
|
1058 |
|
|
cnt+=1
|
1059 |
|
|
else: new_altName = oldVal_fits
|
1060 |
|
|
|
1061 |
|
|
new_altName = remove_duplicated_names(new_altName)
|
1062 |
|
|
new_altName_vec.append(new_altName)
|
1063 |
|
|
else:
|
1064 |
|
|
for j in range(Nrows_fits):
|
1065 |
|
|
oldVal_fits = (fits_data[ name_altName_key ][j]).strip()
|
1066 |
|
|
old_altName_vec.append(oldVal_fits)
|
1067 |
|
|
if j in rowFits_match:
|
1068 |
|
|
new_altName = ascii_table[col_altName_ascii][rowAscii_match[cnt]+1]
|
1069 |
|
|
cnt+=1
|
1070 |
|
|
else: new_altName = oldVal_fits
|
1071 |
|
|
|
1072 |
|
|
new_altName = remove_duplicated_names(new_altName)
|
1073 |
|
|
new_altName_vec.append(new_altName)
|
1074 |
|
|
|
1075 |
|
|
elif not replace_altName:
|
1076 |
|
|
if name_in_altName:
|
1077 |
|
|
altName_flag = True
|
1078 |
|
|
print '\n\t%s %s appended & %s added' % (info, name_altName_key, name_Name_key)
|
1079 |
|
|
names_fits = fits_data[name_Name_key].strip()
|
1080 |
|
|
for j in range(Nrows_fits):
|
1081 |
|
|
oldVal_fits = (fits_data[ name_altName_key ][j]).strip()
|
1082 |
|
|
old_altName_vec.append(oldVal_fits)
|
1083 |
|
|
if j in rowFits_match:
|
1084 |
|
|
new_altName = "; ".join([ oldVal_fits, ascii_table[col_altName_ascii][rowAscii_match[cnt]+1], name_fits[j] ])
|
1085 |
|
|
cnt+=1
|
1086 |
|
|
else:
|
1087 |
|
|
new_altName = oldVal_fits
|
1088 |
|
|
|
1089 |
|
|
new_altName = remove_duplicated_names(new_altName)
|
1090 |
|
|
new_altName_vec.append(new_altName)
|
1091 |
|
|
else:
|
1092 |
|
|
for j in range(Nrows_fits):
|
1093 |
|
|
oldVal_fits = (fits_data[ name_altName_key ][j]).strip()
|
1094 |
|
|
old_altName_vec.append(oldVal_fits)
|
1095 |
|
|
if j in rowFits_match:
|
1096 |
|
|
if oldVal_fits in [np.nan, "NULL", "NaN", "False"]: new_altName = ascii_table[col_altName_ascii][rowAscii_match[cnt]+1]
|
1097 |
|
|
else:
|
1098 |
|
|
new_altName = "%s; %s" % (oldVal_fits, ascii_table[col_altName_ascii][rowAscii_match[cnt]+1])
|
1099 |
|
|
cnt+=1
|
1100 |
|
|
else: new_altName = oldVal_fits
|
1101 |
|
|
|
1102 |
|
|
new_altName = remove_duplicated_names(new_altName)
|
1103 |
|
|
new_altName_vec.append(new_altName)
|
1104 |
|
|
|
1105 |
|
|
|
1106 |
|
|
maxLength_altName_fits = max([len(item) for item in fits_data[ name_altName_key ]])
|
1107 |
|
|
maxLength_altName_ascii = max([len(item) for item in ascii_table[col_altName_ascii]])
|
1108 |
|
|
|
1109 |
|
|
maxLength_altName_new = max([len(item) for item in new_altName_vec])
|
1110 |
|
|
|
1111 |
|
|
len_ALT_NAME = [maxLength_altName_fits, maxLength_altName_ascii, maxLength_altName_new]
|
1112 |
|
|
|
1113 |
|
|
'''
|
1114 |
|
|
*** Update the length of ALT_NAME. The only way, though, is to re-create the column with the new format ***
|
1115 |
|
|
'''
|
1116 |
|
|
if altName_flag:
|
1117 |
|
|
|
1118 |
|
|
|
1119 |
|
|
name_vec = []
|
1120 |
|
|
format_vec = []
|
1121 |
|
|
unit_vec = []
|
1122 |
|
|
|
1123 |
|
|
|
1124 |
|
|
for j in range(fits_keywds.index(name_altName_key)+1, len(fits_keywds)):
|
1125 |
|
|
name_vec.append(coldefs.names[j])
|
1126 |
|
|
format_vec.append(coldefs.formats[j])
|
1127 |
|
|
unit_vec.append(coldefs.units[j])
|
1128 |
|
|
|
1129 |
|
|
|
1130 |
|
|
tmp = 0
|
1131 |
|
|
for j in range(fits_keywds.index(name_altName_key)+1, len(fits_keywds)):
|
1132 |
|
|
coldefs.del_col(name_vec[tmp])
|
1133 |
|
|
tmp+=1
|
1134 |
|
|
|
1135 |
|
|
|
1136 |
|
|
coldefs.del_col(name_altName_key)
|
1137 |
|
|
|
1138 |
|
|
|
1139 |
|
|
col_tmp = pyfits.Column(name=name_altName_key, format=str(max(len_ALT_NAME))+'A', unit = 'None', array=new_altName_vec)
|
1140 |
|
|
coldefs.add_col(col_tmp)
|
1141 |
|
|
hdulist.columns = coldefs
|
1142 |
|
|
|
1143 |
|
|
|
1144 |
|
|
tmp = 0
|
1145 |
|
|
data_vec_tmp = []
|
1146 |
|
|
|
1147 |
|
|
for j in range(fits_keywds.index(name_altName_key)+1, len(fits_keywds)):
|
1148 |
|
|
data_vec_tmp = hdulist.data[name_vec[tmp]]
|
1149 |
|
|
col_tmp = pyfits.Column(name=name_vec[tmp], format=format_vec[tmp], unit = unit_vec[tmp], array=data_vec_tmp)
|
1150 |
|
|
coldefs.add_col(col_tmp)
|
1151 |
|
|
tmp +=1
|
1152 |
|
|
data_vec_tmp = []
|
1153 |
|
|
|
1154 |
|
|
hdulist = pyfits.new_table(coldefs)
|
1155 |
|
|
|
1156 |
|
|
'''
|
1157 |
|
|
*** Write summary report for matching/new clusters ***
|
1158 |
|
|
|
1159 |
|
|
and also
|
1160 |
|
|
|
1161 |
|
|
*** 3rd data UPDATE: the columns of new clusters are filled in with the correct values ***
|
1162 |
|
|
'''
|
1163 |
|
|
|
1164 |
|
|
|
1165 |
|
|
if len(rowAscii_match) > 0:
|
1166 |
|
|
length_new_field = []
|
1167 |
|
|
index_ascii_field_vec = []
|
1168 |
|
|
|
1169 |
|
|
tmp_lenght = ''
|
1170 |
|
|
for fields in ascii_keywds:
|
1171 |
|
|
index_ascii_field = ascii_keywds.index(fields)
|
1172 |
|
|
index_ascii_field_vec.append(index_ascii_field)
|
1173 |
|
|
index_fits_field = coldefs.names.index(fields)
|
1174 |
|
|
if coldefs.formats[index_fits_field].find('A') >= 0:
|
1175 |
|
|
tmp_lenght = coldefs.formats[index_fits_field].split('A')[0]
|
1176 |
|
|
elif coldefs.formats[index_fits_field].find('E') >= 0 or coldefs.formats[index_fits_field].find('D') >= 0:
|
1177 |
|
|
tmp_lenght = '15'
|
1178 |
|
|
elif coldefs.formats[index_fits_field].find('I') >= 0:
|
1179 |
|
|
max_len_int = max(len(str(elem).strip()) for elem in ascii_table[index_ascii_field])
|
1180 |
|
|
tmp_lenght = str(max_len_int + 3)
|
1181 |
|
|
elif coldefs.formats[index_fits_field].find('L') >= 0:
|
1182 |
|
|
tmp_lenght = '6'
|
1183 |
|
|
|
1184 |
|
|
length_new_field.append( max( int(tmp_lenght), len(fields)+3 ) )
|
1185 |
|
|
|
1186 |
|
|
file_report.write("\n# >>>> CLUSTERS PROPERTIES ** UPDATED ** IN THE FITS TABLE <<<<\n\n")
|
1187 |
|
|
to_write = ""
|
1188 |
|
|
|
1189 |
|
|
|
1190 |
|
|
for tmp, fields in enumerate(ascii_keywds):
|
1191 |
|
|
|
1192 |
|
|
max_len_new = length_new_field[tmp]
|
1193 |
|
|
|
1194 |
|
|
if fields in fits_keywds:
|
1195 |
|
|
max_len_old = max(len(str(elem).strip()) for elem in fits_data[fields])
|
1196 |
|
|
else:
|
1197 |
|
|
max_len_old = max_len_new
|
1198 |
|
|
|
1199 |
|
|
if fields in [name_Name_key, name_zRef_key]:
|
1200 |
|
|
|
1201 |
|
|
|
1202 |
|
|
|
1203 |
|
|
maxLength_fits = max([len(item) for item in fits_data[fields]])
|
1204 |
|
|
maxLength_ascii = max([len(item) for item in ascii_table[index_ascii_field_vec[tmp]] ])
|
1205 |
|
|
|
1206 |
|
|
|
1207 |
|
|
if maxLength_ascii > maxLength_fits:
|
1208 |
|
|
print '\n\t%s New %ss are longer than ones in fits: recreating the column with larger size (%sA -> %sA)' % (info, fields, maxLength_fits, maxLength_ascii)
|
1209 |
|
|
|
1210 |
|
|
new_format = '%sA' % maxLength_ascii
|
1211 |
|
|
|
1212 |
|
|
hdulist = recreate_reformatted_column(hdulist, fields, new_format, hdulist.data[fields] )
|
1213 |
|
|
|
1214 |
|
|
|
1215 |
|
|
elif fields == name_altName_key and altName_flag:
|
1216 |
|
|
max_len_old = max([len(item) for item in old_altName_vec])
|
1217 |
|
|
max_len_new = max([len(item) for item in new_altName_vec])
|
1218 |
|
|
|
1219 |
|
|
|
1220 |
|
|
elif fields == name_paper_key and paper_flag:
|
1221 |
|
|
max_len_new = max_length_paper
|
1222 |
|
|
|
1223 |
|
|
label_tot_length = str(int(max_len_old) + int(max_len_new) +3)
|
1224 |
|
|
formatting = '{0:^%ss}' % (label_tot_length)
|
1225 |
|
|
|
1226 |
|
|
to_write += formatting.format( fields )
|
1227 |
|
|
|
1228 |
|
|
file_report.write(to_write+"\n")
|
1229 |
|
|
|
1230 |
|
|
|
1231 |
|
|
for r, idx in enumerate(rowAscii_match):
|
1232 |
|
|
|
1233 |
|
|
|
1234 |
|
|
clRow_fits = rowFits_match[r]
|
1235 |
|
|
clRow_ascii = idx
|
1236 |
|
|
|
1237 |
|
|
to_write = "\n"
|
1238 |
|
|
|
1239 |
|
|
for tmp, fields in enumerate(ascii_keywds):
|
1240 |
|
|
|
1241 |
|
|
kwCol_fits = hdulist.data.names.index(fields)
|
1242 |
|
|
kwCol_ascii = ascii_keywds.index(fields)
|
1243 |
|
|
|
1244 |
|
|
oldVal_fits = hdulist.data[clRow_fits][kwCol_fits]
|
1245 |
|
|
newVal_ascii = ascii_table[kwCol_ascii][clRow_ascii+1]
|
1246 |
|
|
|
1247 |
|
|
|
1248 |
|
|
|
1249 |
|
|
|
1250 |
|
|
if str(newVal_ascii).strip() in ['', '-', '-1.6375E+30', '-1.6375e+30']:
|
1251 |
|
|
|
1252 |
|
|
if keys_form_unit[fields]['TFORM'].find('A') >=0 : newVal_ascii = '-'
|
1253 |
|
|
|
1254 |
|
|
else : newVal_ascii = -1.6375e+30
|
1255 |
|
|
|
1256 |
|
|
if (fields in name_mass_key or fields in name_errMass_key) and newVal_ascii != -1.6375e+30:
|
1257 |
|
|
newVal_ascii = h_factor * float(newVal_ascii)
|
1258 |
|
|
|
1259 |
|
|
max_len_new = length_new_field[tmp]
|
1260 |
|
|
|
1261 |
|
|
if fields in fits_keywds:
|
1262 |
|
|
max_len_old = max(len(str(elem).strip()) for elem in fits_data[fields])
|
1263 |
|
|
else:
|
1264 |
|
|
max_len_old = max_len_new
|
1265 |
|
|
|
1266 |
|
|
|
1267 |
|
|
if fields == name_altName_key and altName_flag:
|
1268 |
|
|
max_len_old = max([len(item) for item in old_altName_vec])
|
1269 |
|
|
max_len_new = max([len(item) for item in new_altName_vec])
|
1270 |
|
|
|
1271 |
|
|
oldVal_fits = old_altName_vec[clRow_fits]
|
1272 |
|
|
newVal_ascii = new_altName_vec[clRow_fits]
|
1273 |
|
|
|
1274 |
|
|
elif fields == name_paper_key and paper_flag:
|
1275 |
|
|
max_len_new = max_length_paper
|
1276 |
|
|
|
1277 |
|
|
oldVal_fits = fits_data[name_paper_key][clRow_fits]
|
1278 |
|
|
newVal_ascii = new_paper_vec[clRow_ascii]
|
1279 |
|
|
|
1280 |
|
|
formatting = ' {0:>%ss} | {1:<%ss} ' % (max_len_old, max_len_new)
|
1281 |
|
|
to_write += formatting.format(str(oldVal_fits), str(newVal_ascii))
|
1282 |
|
|
|
1283 |
|
|
|
1284 |
|
|
if keys_form_unit[fields]['TFORM'] == 'L':
|
1285 |
|
|
if str(newVal_ascii).upper() in ["TRUE", "YES", "1.0"]: hdulist.data[clRow_fits][kwCol_fits] = True
|
1286 |
|
|
elif str(newVal_ascii).upper() in ["FALSE", "NO", "0.0", "", "NONE", "NULL", "[]", "{}"]: hdulist.data[clRow_fits][kwCol_fits] = False
|
1287 |
|
|
else:
|
1288 |
|
|
try:
|
1289 |
|
|
hdulist.data[clRow_fits][kwCol_fits] = newVal_ascii
|
1290 |
|
|
except:
|
1291 |
|
|
if str(newVal_ascii) == 'nan': hdulist.data[clRow_fits][kwCol_fits] = np.nan
|
1292 |
|
|
|
1293 |
|
|
file_report.write(to_write)
|
1294 |
|
|
|
1295 |
|
|
|
1296 |
|
|
|
1297 |
|
|
fits_keywds=[]
|
1298 |
|
|
length_label_vec = []
|
1299 |
|
|
Ncol_fits=int(hdulist.header['TFIELDS'])
|
1300 |
|
|
for i in range(Ncol_fits):
|
1301 |
|
|
fits_keywds.append(hdulist.data.names[i])
|
1302 |
|
|
|
1303 |
|
|
if len(rowAscii_new) > 0:
|
1304 |
|
|
file_report.write("\n\n# >>>> NEW CLUSTERS ** ADDED ** TO THE FITS TABLE <<<<\n\n")
|
1305 |
|
|
to_write = ""
|
1306 |
|
|
tmp = 0
|
1307 |
|
|
for fields in fits_keywds:
|
1308 |
|
|
|
1309 |
|
|
format_tmp = coldefs.formats[tmp]
|
1310 |
|
|
tmp_length = ''
|
1311 |
|
|
|
1312 |
|
|
if format_tmp.find('A') >= 0:
|
1313 |
|
|
tmp_length = format_tmp.split('A')[0]
|
1314 |
|
|
elif format_tmp.find('E') >= 0 or format_tmp.find('D') >= 0:
|
1315 |
|
|
tmp_length = '15'
|
1316 |
|
|
elif format_tmp.find('I') >= 0:
|
1317 |
|
|
index_fits_field = fits_keywds.index(fields)
|
1318 |
|
|
max_len_int = len(str(fits_data[-1][index_fits_field]))
|
1319 |
|
|
tmp_length = str(max_len_int+3)
|
1320 |
|
|
elif format_tmp.find('L') >= 0:
|
1321 |
|
|
tmp_length = '6'
|
1322 |
|
|
|
1323 |
|
|
length_label_vec.append( max( int(tmp_length), len(fields)+3 ) )
|
1324 |
|
|
|
1325 |
|
|
formatting = '{0:^%ss}' % (length_label_vec[-1])
|
1326 |
|
|
|
1327 |
|
|
to_write +=formatting.format( fields )
|
1328 |
|
|
tmp +=1
|
1329 |
|
|
|
1330 |
|
|
file_report.write(to_write+"\n")
|
1331 |
|
|
|
1332 |
|
|
j = 0
|
1333 |
|
|
|
1334 |
|
|
for name in new_clNames:
|
1335 |
|
|
|
1336 |
|
|
to_write = "\n"
|
1337 |
|
|
for k, field in enumerate(fits_keywds):
|
1338 |
|
|
index_field = coldefs.names.index(field)
|
1339 |
|
|
format_field = coldefs.formats[index_field]
|
1340 |
|
|
|
1341 |
|
|
kwCol_fits = fits_keywds.index(field)
|
1342 |
|
|
oldVal_fits = hdulist.data[Nrows_fits+j][kwCol_fits]
|
1343 |
|
|
|
1344 |
|
|
if field in ascii_keywds:
|
1345 |
|
|
kwCol_ascii = ascii_keywds.index(field)
|
1346 |
|
|
|
1347 |
|
|
newVal_ascii = ascii_table[kwCol_ascii][rowAscii_new[j]+1]
|
1348 |
|
|
|
1349 |
|
|
if format_field.find('A') >= 0 and (newVal_ascii.strip()).upper() in ['', '-', "NULL", "NAN", "NONE", "FALSE"]: newVal_ascii = '-'
|
1350 |
|
|
elif str(newVal_ascii).strip() in ['-1.6375E+30', '-1.6375e+30']: newVal_ascii = -1.6375e+30
|
1351 |
|
|
if (fields in name_mass_key or fields in name_errMass_key) and newVal_ascii != -1.6375e+30:
|
1352 |
|
|
newVal_ascii = h_factor * float(newVal_ascii)
|
1353 |
|
|
else:
|
1354 |
|
|
oldVal_fits = hdulist.data[Nrows_fits+j][kwCol_fits]
|
1355 |
|
|
|
1356 |
|
|
if field == name_index_key:
|
1357 |
|
|
|
1358 |
|
|
newVal_ascii = 1 + hdulist.data[Nrows_fits+j-1][kwCol_fits]
|
1359 |
|
|
|
1360 |
|
|
elif field == name_catalog_key:
|
1361 |
|
|
newVal_ascii = str(new_catalog)
|
1362 |
|
|
|
1363 |
|
|
|
1364 |
|
|
elif field == 'GLON':
|
1365 |
|
|
if len(ra_ascii) > 0 and len(dec_ascii)>0: newVal_ascii = round(astCoords.convertCoords('J2000', 'GALACTIC', ra_ascii[rowAscii_new[j]], dec_ascii[rowAscii_new[j]], 2000)[0], 5)
|
1366 |
|
|
elif field == 'GLAT':
|
1367 |
|
|
if len(ra_ascii) > 0 and len(dec_ascii)>0: newVal_ascii = round(astCoords.convertCoords('J2000', 'GALACTIC', ra_ascii[rowAscii_new[j]], dec_ascii[rowAscii_new[j]], 2000)[1], 5)
|
1368 |
|
|
|
1369 |
|
|
elif field == name_zErr_key:
|
1370 |
|
|
newVal_ascii = np.nan
|
1371 |
|
|
elif field == name_zLimit_key:
|
1372 |
|
|
newVal_ascii = np.nan
|
1373 |
|
|
elif field == name_paper_key:
|
1374 |
|
|
newVal_ascii = tmp_new_paper
|
1375 |
|
|
elif format_field == 'L':
|
1376 |
|
|
newVal_ascii = False
|
1377 |
|
|
elif field in name_coordinates_keys:
|
1378 |
|
|
newVal_ascii = np.nan
|
1379 |
|
|
elif format_field == 'I':
|
1380 |
|
|
newVal_ascii = -1
|
1381 |
|
|
elif format_field == 'E':
|
1382 |
|
|
newVal_ascii = -1.6375E+30
|
1383 |
|
|
elif format_field.find("A") >= 0:
|
1384 |
|
|
newVal_ascii = 'Null'
|
1385 |
|
|
|
1386 |
|
|
|
1387 |
|
|
if format_field == 'L':
|
1388 |
|
|
if str(newVal_ascii).upper() in ["TRUE", "YES", "1.0"]: hdulist.data[Nrows_fits+j][kwCol_fits] = True
|
1389 |
|
|
elif str(newVal_ascii).upper() in ["FALSE", "NO", "0.0", "", "NONE", "NULL", "[]", "{}"]: hdulist.data[Nrows_fits+j][kwCol_fits] = False
|
1390 |
|
|
else:
|
1391 |
|
|
try:
|
1392 |
|
|
hdulist.data[Nrows_fits+j][kwCol_fits] = newVal_ascii
|
1393 |
|
|
except:
|
1394 |
|
|
if str(newVal_ascii) == 'nan': hdulist.data[Nrows_fits][kwCol_fits] = np.nan
|
1395 |
|
|
else: print '%s A problem occurred for cluster Name = %s : field = %s , value = %s \nAborted.\n' % (error, name, field, newVal_ascii); os._exit(0)
|
1396 |
|
|
|
1397 |
|
|
formatting = '{0:^%ss}' % (length_label_vec[k])
|
1398 |
|
|
to_write += formatting.format( str(newVal_ascii) )
|
1399 |
|
|
j += 1
|
1400 |
|
|
file_report.write(to_write)
|
1401 |
|
|
|
1402 |
|
|
|
1403 |
|
|
'''
|
1404 |
|
|
*** 4th data UPDATE: update the fits HEADER with the Version number and the creation date ***
|
1405 |
|
|
'''
|
1406 |
|
|
|
1407 |
|
|
hdulist.header.add_comment("", before="TTYPE1")
|
1408 |
|
|
version = raw_input("\n%s Please enter the Version number of the new table: " % question)
|
1409 |
|
|
|
1410 |
|
|
version_check = False
|
1411 |
|
|
while version_check == False:
|
1412 |
|
|
try:
|
1413 |
|
|
if float(version): version_check = True
|
1414 |
|
|
except ValueError:
|
1415 |
|
|
print bcolors.FAIL+ "\n\t\t*** Version number not valid ***" + bcolors.ENDC
|
1416 |
|
|
version = raw_input("\n\t-> Please enter a valid version number: ")
|
1417 |
|
|
|
1418 |
|
|
hdulist.header.add_comment("*** Version " +str(version)+" ***", before="TTYPE1")
|
1419 |
|
|
|
1420 |
|
|
today = date.today().strftime("%A %d. %B %Y")
|
1421 |
|
|
comment = "*** Compiled at IDOC/IAS on %s ***" % (today)
|
1422 |
|
|
hdulist.header.add_comment(comment, before="TTYPE1")
|
1423 |
|
|
|
1424 |
|
|
hdulist.header.add_comment("", before="TTYPE1")
|
1425 |
|
|
extname = raw_input("\n%s Please enter the name of the new FITS table (without extension): " % question)
|
1426 |
|
|
hdulist.header.update('EXTNAME', extname, before='TTYPE1')
|
1427 |
|
|
|
1428 |
|
|
|
1429 |
|
|
hdulist.writeto('new_table.fits')
|
1430 |
|
|
|
1431 |
|
|
file_report.close()
|
1432 |
|
|
|
1433 |
|
|
|
1434 |
|
|
hdulist = pyfits.open('new_table.fits')
|
1435 |
|
|
fits_header = hdulist[1].header
|
1436 |
|
|
fits_data = hdulist[1].data
|
1437 |
|
|
|
1438 |
|
|
command = "rm new_table.fits"
|
1439 |
|
|
os.system(command)
|
1440 |
|
|
|
1441 |
|
|
Ncol_fits = int(fits_header['TFIELDS'])
|
1442 |
|
|
Nrows_fits = fits_header['NAXIS2']
|
1443 |
|
|
|
1444 |
|
|
|
1445 |
|
|
_UNDEF_VALUES_ = {
|
1446 |
|
|
'FLOAT' : {np.nan},
|
1447 |
|
|
'INT' : {-1},
|
1448 |
|
|
'STRING' : {'NULL'},
|
1449 |
|
|
name_zType_key : {'undef'},
|
1450 |
|
|
'PIPELINE' : {0},
|
1451 |
|
|
'PIPE_DET' : {0}
|
1452 |
|
|
}
|
1453 |
|
|
|
1454 |
|
|
'''
|
1455 |
|
|
*** 5th data UPDATE: set the proper 'undef' values for the different fields ***
|
1456 |
|
|
'''
|
1457 |
|
|
|
1458 |
|
|
hdulist[1].data = set_undef_values(fits_data)
|
1459 |
|
|
|
1460 |
|
|
file_output = extname+'.fits'
|
1461 |
|
|
print "\n\t>> New updated file:" + bcolors.OKGREEN + " %s " % (file_output) + bcolors.ENDC
|
1462 |
|
|
print "\t>> Details of the applied updates are reported in:" + bcolors.OKGREEN + " %s " % (file_report_name) + bcolors.ENDC + "\n"
|
1463 |
|
|
hdulist.writeto(file_output) |